
©
 C

op
yr

ig
ht

 2
01

7
O

be
o

A Guided Tour of Eclipse Modeling, Monday, October 23, 2017

ACCELEO QUERY LANGUAGE
The small, fast & strong sidekick for your tooling

©
 C

op
yr

ig
ht

 2
01

7
O

be
o

18

our Motivation

Query language for Sirius

©
 C

op
yr

ig
ht

 2
01

7
O

be
o

18

our Motivation

Expressions in M2Doc

©
 C

op
yr

ig
ht

 2
01

7
O

be
o

18

our Motivation

Expressions in Acceleo-MTL

©
 C

op
yr

ig
ht

 2
01

7
O

be
o

18

our Motivation

Expressions in ALE (Action Language for EMF)

©
 C

op
yr

ig
ht

 2
01

7
O

be
o

18

 Syntax :

 Familiar for any user of OCL

 Easily extensible

Language = Syntax + Semantic + Tooling + Runtime

©
 C

op
yr

ig
ht

 2
01

7
O

be
o

18

 Syntax :

 Familiar for any user of OCL

 Easily extensible

 Semantics

 Statically typed

 Forgiving (null/unsetted values, collections)

Language = Syntax + Semantic + Tooling + Runtime

©
 C

op
yr

ig
ht

 2
01

7
O

be
o

18

 Syntax :

 Familiar for any user of OCL

 Easily extensible

 Semantics

 Statically typed

 Forgiving (null/unsetted values, collections)

 Tooling

 Embeddable

 Statically typed with rich type inference

Language = Syntax + Semantic + Tooling + Runtime

©
 C

op
yr

ig
ht

 2
01

7
O

be
o

18

 Syntax :

 Familiar for any user of OCL

 Easily extensible

 Semantics

 Statically typed

 Forgiving (null/unsetted values, collections)

 Tooling

 Embeddable

 Statically typed with rich type inference

 Runtime

 Fast, small, interpreted

Language = Syntax + Semantic + Tooling + Runtime

©
 C

op
yr

ig
ht

 2
01

7
O

be
o

18

self.eContainer(uml::Model).eAllContents()->select(a | a.name.startsWith(‘I’))

©
 C

op
yr

ig
ht

 2
01

7
O

be
o

18

not exactly OCL

 « . » and « » notation, select() →

 ✔ collect() and flatten() are implicit in AQL
(you won’t have a List of Sets)

 Optional variable denotation

 ✘ every expression starts with a var name

 Sequence, Set, Bag, OrderedSet

 ✘ Only Lists & Sets, and the order is
always stable across executions

 Types (uml::Class, family::Person...)

 ✔ are optional in a lambda

->select(a : family::Person| a.firstName.size > 10)

->select(a | a.firstName.size > 10)

 ✔ are union types

 ✔ are infered at validation time

 ✔ no need for cast

©
 C

op
yr

ig
ht

 2
01

7
O

be
o

18

Fast during evaluation, Smart during validation

Validation is optional

©
 C

op
yr

ig
ht

 2
01

7
O

be
o

18

Fast during evaluation, Smart during validation

(*) with Sirius 3.1, October 2015, optimizations happened since then

©
 C

op
yr

ig
ht

 2
01

7
O

be
o

18

Consistently Fast during evaluation

From „EMF-IncQuery: Blazing-fast reaction time even for very large diagrams (Sirius integration)“ by
Ákos Horváth, SiriusCon 2015, Paris

©
 C

op
yr

ig
ht

 2
01

7
O

be
o

18

Predicates analysis and union types

©
 C

op
yr

ig
ht

 2
01

7
O

be
o

18

Extensible with Java
 Included

 Operators semantics : ‘Hello’ + self.name

 Domain specific services

©
 C

op
yr

ig
ht

 2
01

7
O

be
o

18

The Runtime
 Dependencies

 13K lines of non generated Java code, 21K total (EMF API for AST)

 Is not a singleton

©
 C

op
yr

ig
ht

 2
01

7
O

be
o

18

How to get it ?

 Shipped since 2015 as part of the Acceleo project

 Documentation:
https://www.eclipse.org/acceleo/documentation/aql.html

 Other technologies already using it

 Eclipse Sirius

 M2doc (to generate .docx files from a model)

 ALE (Action Language for EMF)

	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19

