UPGRADE is the European Journal for the
Informatics Professional, published bimonthly
at <http://www.upgrade-cepis.org/>

Publisher

UPGRADE is published on behalf of CEPIS (Council of European Pro-
fessional Informatics Societies, <http:/iwww.cepis.org/>) by Novatica
<http:/www.ati.esinovatica/>, journal of the Spanish CEPIS society ATI
(Asociacion de Técnicos de Informatica, <http:/fwww.ati.es/>)

UPGRADE monographs are also published in Spanish (full version
printed; summary, abstracts and some articles online) by Novatica

UPGRADE was created in October 2000 by CEPIS and was first
published by Novatica and INFORMATIK/INFORMATIQUE, hi-
monthly journal of SVI/FSI (Swiss Federation of Professional
Informatics Societies, <http://www.svifsi.ch/>)

UPGRADE is the anchor point for UPENET (UPGRADE European

NETwork), the network of CEPIS member societies’ publications, that

currently includes the following ones:

« Informatica, journal from the Slovenian CEPIS society SDI

+ Informatik-Spektrum, journal published by Springer Verlag on behalf
of the CEPIS societies GI, Germany, and SI, Switzerland

+ ITNOW, magazine published by Oxford University Press on behalf of
the British CEPIS society BCS

+ Mondo Digitale, digital journal from the Italian CEPIS society AICA

+ Novética, journal from the Spanish CEPIS society ATl

+ OCG Journal, journal from the Austrian CEPIS society OCG

+ Pliroforiki, journal from the Cyprus CEPIS society CCS

+ Pro Dialog, journal from the Polish CEPIS society PTI-PIPS

« Télvumél, journal from the Icelandic CEPIS society ISIP

Editorial Team

Chief Editor: Lloreng Pagés-Casas

Deputy Chief Editor: Francisco-Javier Cantais-Sanchez
Associate Editor: Rafael Fernandez Calvo

Editorial Board

Prof. Wolffried Stucky, CEPIS Former President

Prof. Nello Scarabottolo, CEPIS Vice President

Fernando Piera Gémez and Lloreng Pagés-Casas, ATI (Spain)
Francois Louis Nicolet, SI (Switzerland)

Roberto Carniel, ALSI - Tecnoteca (Italy)

UPENET Advisory Board

Matjaz Gams (Informatica, Slovenia)
Hermann Engesser (Informatik-Spektrum, Germany and Switzerland)
Brian Runciman (ITNOW, United Kingdom)
Franco Filippazzi (Mondo Digitale, Italy)
Llorenc Pagés-Casas (Novatica, Spain)
Veith Risak (OCG Journal, Austria)

Panicos Masouras (Pliroforiki, Cyprus)
Andrzej Marciniak (Pro Dialog, Poland)
Thorvardur Kari Olafsson (Télvumal, Iceland)
Rafael Fernandez Calvo (Coordination)

English Language Editors: Mike Andersson, David Cash, Arthur
Cook, Tracey Darch, Laura Davies, Nick Dunn, Rodney Fennemore,
Hilary Green, Roger Harris, Jim Holder, Pat Moody, Brian Robson

Cover page designed by Concha Arias Pérez
"Golden Ratio" / © ATI 2008

Layout Design: Frangois Louis Nicolet
Composition: Jorge Ll&cer-Gil de Ramales

Editorial correspondence: Lloreng Pagés-Casas <pages@ati.es>
Advertising correspondence: <novatica@ati.es>

UPGRADE Newslist available at
<http://www.upgrade-cepis.org/pages/editinfo.html#newslist>

Copyright

© Novética 2008 (for the monograph)

© CEPIS 2008 (for the sections UPENET and CEPIS News)

All rights reserved under otherwise stated. Abstracting is permitted
with credit to the source. For copying, reprint, or republication per-
mission, contact the Editorial Team

The opinions expressed by the authors are their exclusive responsibility
ISSN 1684-5285

Monograph of next issue (June 2008)

"Next Generation
Technology-Enhanced Learning"

(The full schedule of UPGRADE is available at our website)

@cers LH2GRADE

The European Journal for the Informatics Professional
http:/ /www.upgrade-cepis.org

Vol. IX, issue No. 2, April 2008

2 Editorial
New UPENET Partners — Niko Schlamberger (President of CEPIS)

2 From the Chief Editor’s Desk
Welcome to our Deputy Chief Editor — Lloreng Pagés-Casas
(Chief Editor of UPGRADE)

4 Presentation. MDA® at the Age of Seven: Past, Present and Future
— Jean Bézivin, Antonio Vallecillo-Moreno, Jesus Garcia-Molina,
and Gustavo Rossi

7 ABrief History of MDA — Andrew Watson
12 MDA Manifestations — Bran Selic
17 The Domain-Specific IDE — Steve Cook and Stuart Kent

22 Model Intelligence: an Approach to Modeling Guidance — Jules
White, Douglas C. Schmidt, Andrey Nechypurenko, and Egon Wuchner

29 Model Differences in the Eclipse Modelling Framework — Cédric
Brun and Alfonso Pierantonio

35 Model-Driven Architecture® at Eclipse — Richard C. Gronback
and Ed Merks

40 Model-Driven Web Engineering — Nora Koch, Santiago Melia-
Beigbeder, Nathalie Moreno-\ergara, Vicente Pelechano-Ferragud,
Fernando Sanchez-Figueroa, and Juan-Manuel Vara-Mesa

46 From Informatik Spektrum (GI, Germany, and SI, Switzerland)
High Performance Computing
The TOP500 Project: Looking Back over 15 Years of Supercomputing
— Hans Werner Meuer

62 From Mondo Digitale (AICA, Italy)
Project Management
Critical Factors in IT Projects — Marco Sampietro

68 CEPIS Projects
Selected CEPIS News — Fiona Fanning

* This monograph will be also published in Spanish (full version printed; summary, abstracts, and some
articles online) by Novatica, journal of the Spanish CEPIS society ATl (Asociacion de Técnicos de
Informatica) at <http://www.ati.es/novatica/>.

Editorial Section

Editorial

New UPENET Partners

As UPGRADE readers very likely know, our journal is the
anchor point for UPENET (UPGRADE European Network).
This network of CEPIS member societies’ publications, cre-
ated in 2004, has as its main purpose to make available to the
Information and Communication Technology communities
(professional, academic, business, government), mainly in
Europe but also worldwide, the wealth of knowledge and ex-
perience accumulated by these publications, as well as to fos-
ter cooperation among them.

To this end UPGRADE republishes, in English, in its sec-
tion UPENET, articles from the syndicated publications while
these can republish, in their own languages, articles published
in UPGRADE or in any of the syndicated publications.

Through these years several CEPIS member societies’ pub-
lications have joined the network and now we are proud to
announce that two new journals have decided to join in, so
augmenting the UPENET membership to nine.

The two new UPENET partners are:

W Informatica, quarterly journal published, in English, by
the Slovenian CEPIS member society Slovensko drustvo
Informatika (Slovenian Society Informatika, SDI, http://
www.drustvo-informatika.si). Informatica started in 1977, one
year after SDI was established.

B Toélvumal, biannual journal published, in Icelandic, by
the Icelandic CEPIS society Skyrsluteknifélagio (Icelandic

From the Chief Editor’s Desk

Society for Information Processing, ISIP, http://www.sky.is).
It was created in 1976. By the way, Télvumal means "compu-
ter issues" in Icelandic.

Accordingly, Informatica’s Managing Editor, Matjaz
Gams, and Thorvardur Kari Olafsson, Chief Editor of
Tolvumal, become members of the UPENET Advisory Board,
the former on behalf of the Chief Editor, Anton P. Zeleznikar.

Let me express, on behalf of the Executive Committee of
CEPIS and in my name, my satisfaction on this eventful fact
which shows that our networking initiative is moving in the
right direction even though, of course, it still has room for
growth and improvement. | therefore sincerely hope that this
announcement will motivate further CEPIS member societies
to reflect upon what they have to offer to increase visibility of
their work, to inform their constituencies about the work of
others, to broaden UPENET, and to enrich the UPGRADE
content. | am sure that our new partners will contribute to en-
hance the scope and quality of materials as well as the rel-
evance and usefulness of the UPGRADE contents for the ICT
community in Europe and worldwide.

Dobrodosli, velkomin, welcome!

Niko Schlamberger
President of CEPIS
<president AT cepis DOT org>

Welcome to our Deputy Chief Editor

It is my pleasure to announce that the Executive Commit-
tee of CEPIS, the governing body of our publisher, has ap-
pointed Francisco-Javier Cantais-Sanchez for the new posi-
tion of Deputy Chief Editor of UPGRADE.

Javier, a young Spanish lawyer and economist who has
worked as an IT consultant for important firms for several years,
will cooperate closely with the Chief Editor in the diverse tasks

required to publish a new issue of our digital journal every
other month.
Welcome on board, Javier!

Lloreng Pagés-Casas
Chief Editor of UPGRADE
<pages AT ati DOT es>

©cees DIPENET

UPGRADE European METwork

The nehvark of CEPIS mamber societies” publications

Cument poriners
Informatica (501, Sovwenia), Informatik Spelkdrum (Z1, Germany, ond 3, Switzedond),
IINOW EC5, United Kingdom), Mondo Digitale (AC A, Haby),
Movdtica (AT, Span],OCG Journal (2CG, Austria),
Plirctorilci (CC 5 Cyprus), Pro Dialog [FTHRIPE, Foland), Tolvemal (5IF, lcslaond)

http:f e upgrade-cepis.orglf poges/upenet htmi

2 UPGRADE vol. IX, No. 2, April 2008

© CEPIS

@ "
@ &
W

po | =
futl (=1
- =
L (]

A

E?"';'qilﬂﬂa!:k .
i i

Come and share your passion for technology
28" july - 3" august | Feria Valencia

Www.campus-party.es

NERALITAT E3
ALENCIANA ‘ A

@ CEPIS is partner of 1 %rrtr;rp:s

Model-Driven Software Development

Presentation

MDAZP® at the Age of Seven: Past, Present and Future

Jean Bézivin, Antonio Vallecillo-Moreno, Jesus Garcia-Molina, and Gustavo Rossi

The Model-Driven Architecture (MDA) initiative was
launched by the OMG (Object Management Group) in late
2000 to propose a new way to consider the development
and maintenance of information systems, using models as
the essential artefacts of the software development process.

In the MDA approach, models are the key elements used
to direct the course of understanding, design, construction,
testing, deployment, operation, administration, maintenance,
and modification of systems. MDA also raises the level of
abstraction by enabling specifications that use different
models to focus on different concerns, and by automating
the production of such specifications and the software that
meets them. In particular, MDA differentiates between plat-
form-independent models and platform-specific models.
Thus, the basic functionality of the system can be separated
from its final implementation; the business logic can be sepa-
rated from the underlying platform technology, etc. The
transformations between models enable the automated im-

The Guest Editors

Jean Bézivin is a professor of Computer Science at the
Université de Nantes, France, and member of the ATLAS
research group recently created in Nantes (INRIA & LINA) by
Patrick Valduriez. He has been very active in Europe in the
Object-Oriented community and initiated the ECOOP (European
Conference on Object-Oriented Programming) series of
conferences (with Pierre Cointe), the TOOLS series of
conferences (with Bertrand Meyer), and the <<UML>>/
MOoDELS (Model Driven Engineering Languages and Systems)
series of conferences (with Pierre-Alain Muller). He has also
organized several workshops at OOPSLA (Object-Oriented
Programming, Systems, Languages, and Applications), such as
those in 1995 on "Use Case Technology"”, in 1998 on "MDD
with CDIF", at ECOOP in 2000 on "Model Driven Engineering",
etc. His present research interests include legacy reverse
engineering, general model engineering and, in particular, model-
transformation languages and frameworks, and the building of
model-engineering platforms. <jean.bezivin@univ-nantes.fr>.

Antonio Vallecillo-Moreno is an associate professor at the
Department of Computer Science of the Universidad de Mala-
ga, Spain. His research interests include model-driven software
development, componentware, open distributed processing, and
the industrial use of formal methods. He holds BSc and MSc
degrees in mathematics, and a PhD degree in Computer Science

4 UPGRADE vol. 1X, No. 2, April 2008

plementation of a system from the different models defined
for it or alternatively allow abstract models to be recon-
structed from legacy code for the purpose of software mod-
ernization or migration. In addition, MDA allows further
models of the system to be defined, each one focusing on a
specific concern, at the right level of abstraction. These spe-
cific models are described using Domain Specific Languages
(DSLs) and are related by Model Transformation (MT)
specifications. They can also drive tools that automate the
model transformations into the final implementations.
Since the emergence of MDA much has happened in the
field of modern system and software model engineering. A
variety of new acronyms (MDD, MDE, MIC, ADM, MBA,
etc.) are appearing to delimit the constantly extending scope
of application of core modelling techniques. In addition,
the evolution towards modelling practices has combined
with the Open Source Software movement in environments
like Eclipse to reinforce this important paradigm shift.

from the Universidad de Malaga. He is the Universidad de
Malaga representative at 1ISO and the OMG, and a member of
ACM, IEEE, IEEE Standards Associations, and the IEEE
Computer Society. <av@Icc.uma.es>.

Jesus Garcia-Molina is a full professor at the Faculty of
Computer Science at the Universidad de Murcia, Spain where
he leads the Software Technology Research Group. His research
is focused on model-driven software development, in particular
model transformation languages, embedded DSL, frameworks,
and model-driven modernization. He received his PhD in Science
from the Universidad de Murcia. <jmolina@um.es>.

Gustavo Rossi is a full professor at the Faculty of Computer
Science at the Universidad Nacional de La Plata, Argentina
where he heads LIFIA, a research Laboratory in Computer
Science. He has a PhD from PUC-Rio, Brazil. His research
interests are: web design methods, separation of concerns in
web engineering and in mobile computing. He is one of the
developers of the Object-Oriented Hypermedia Design Model
(OOHDM), a mature model-driven design method for Web
applications. He has published many papers on these issues in
specialized journals and conferences. <gustavo@lifia.
info.unlp.edu.ar>.

© Novatica

Model-Driven Software Development

Seven years after MDA was originally proposed the time
is now ripe to look at the old and new objectives, the achieve-
ments so far, the incomplete realizations, the difficulties
encountered, the ongoing efforts, the research roadmap, and
the work still to be done in order to fulfil the initial prom-
ise. With this special issue we hope to contribute to such an
assessment.

For this task we have been fortunate enough to receive
a set of contributions from some of the most relevant and
influential people in MDA and Model-Driven Engineering.
The papers of this special issue reflect the personal views
and insights of some of the creators of MDA on how things
have progressed since the initial MDA proposal, and what
might be the way ahead; some of the new practices and
tools for performing software model engineering; and some
of the projects and domains in which MDA is being suc-
cessfully applied.

In the first group of papers we have a contribution from
Andrew Watson, from OMG, who presents the official view
on MDA together with a brief history which charts the in-
fluences that led to its creation, shows how it has evolved,
and outlines the contributions it can make in the future. Then,
Bran Selic revisits his influential paper "An MDA Mani-
festo™ in the light of all that has happened in recent years.
The original article identified the key elements that charac-
terized the MDA approach and its value proposition. His
present article contains an assessment of the progress made
since then towards fulfilling that vision, identifies the key
obstacles that are hindering a more extensive realization of
that vision, and outlines a long-term strategy for overcom-
ing these hurdles.

The second group of papers describes some of the new
practices and tools for software modelling. Steve Cook and
Stuart Kent describe the Microsoft approach to model en-
gineering using Domain Specific Languages, and explain
how powerful these languages can be when used within the
appropriate software development processes and supported
by the right kind of tools. Then, Jules White, Douglas C.
Schmidt, Andrey Nechypurenko, and Egon Wuchner in-
troduce the new concept of Model Intelligence, which uses
domain constraints to guide modellers in the writing of cor-
rect models, something which is especially important in the
case of models of industrial software systems comprising
of tens of thousands of elements. The third paper of this
group is written by Cédric Brun and Alfonso Pierantonio,
who analyse one of the key operations in the embryonic
and fundamental fields of model management and model
evolution: Model Comparison.

Finally, in the third group of papers we have the article
by Rich Gronback and Ed Merks, who present one of the
most successful contributions to the development and wide-
spread acceptance of MDA: The Eclipse Modelling Project.
Then, Nora Koch, Santiago Melia-Beigbeder, Nathalie
Moreno-Vergara, Vicente Pelechano-Barbera, Fernando
Sanchez-Figueroa and Juan Manuel Vara-Mesa show how
MDA principles can be successfully applied in the Web
Engineering domain, not only to build complex Web appli-

© Novatica

cations, but also to achieve a smooth interoperability be-
tween existing Web Engineering methods and tools.

We sincerely hope that the readers will enjoy this spe-
cial issue as much as we, the editors, have enjoyed talking
with the authors of the papers and merging their excellent
contributions into a comprehensive assessment of the cur-
rent state of MDA and the future opportunities (and chal-
lenges) facing MDA if it is to fulfil its original vision in the
realm of Model-Driven Engineering.

UPGRADE vol. Ix, No. 2, April 2008 5

Model-Driven Software Development

Useful References on Model-Driven Software Development

The following references, along with those included in
the articles in this monograph, will help our readers to dig
deeper into this field.

Books

m A. Kleppe, J. Warmer, W. Bast. "MDA Explained.
The Model Driven Architecture: Practice and Promise".
Addison-Wesley, 2003. ISBN: 032119442X. A very clear
and rigorous introduction to MDA, approached from a prac-
tical point of view.

m David Frankel. "Model Driven Architecture. Apply-
ing MDA to Enterprise Computing”. OMG Press, 2003.
Analysing the application of MDA within the context of
enterprise software systems.

m Thomas Stahl, Markus Vélter. "Model-Driven Soft-
ware Development". John Wiley, 2006. ISBN: 0470025700.
An excellent introduction to model-driven development.
The most comprehensive text written about Dynamic Sys-
tems Development Method (DSDM).

m Tony Clark, Andy Evans, Paul Sammut, James
Willans. "Applied Metamodelling. A Foundation for Lan-
guage Driven Development”. Provides a comprehensive
vision of metamodelling and DSL creation. Downloadable
from <http://www.ceteva.com/book.html>.

m Jack Greenfield, Keith Short, Steve Cook, Stuart Kent.
"Software Factories: Assembling Applications with Patterns,
Models, Frameworks, and Tools". John Wiley, 2004. ISBN:
0471202843. Describes the approach of software factories
which combine software product lines with model-driven de-
velopment. Also includes an assessment of MDAand its stand-
ards. An excellent book on software development.

m Jos Warmer, Anneke Kleppe. "The Object Constraint
Language: Getting Your Models Ready for MDA", 2™ edi-
tion, Addison Wesley, 2003. ISBN: 0321179366. Consid-
ered to be the foremost guide to OCL.

Events

Every year a number of MDA and DSDM related confer-
ences and workshops are held, among the most important of
which are the European Conference on Model Driven Archi-
tecture (EC-MDA), Model Driven Engineering Languages
and Systems (MoDELS), and the International Conference
on Model Transformation (ICMT). For the last four years Spain
has hosted the Taller sobre Desarrollo de Software Dirigido
por Modelos (Model-Driven Software Development Work-
shop) as part of the Jornadas de Investigacion en Ingenieria
de Software y Bases de Datos (JISBD or Conference on Soft-
ware Engineering and Databases).

OMG

At OMG’s web site (Object Management Group, <http:/
/www.omg.org>) you can find standards specifications for
MDA (MOF, XMI, etc.) and MDA’s official web page
<http://www.omg.org/mda/>.

6 UPGRADE vol. IX, No. 2, April 2008

Eclipse

The Eclipse Modeling project aims to promote model-
directed development within the Eclipse community. From
<http://www.eclipse.org/modeling/> you can access all re-
lated subprojects (EMF, GMF, GMT, etc.).

Web Sites

m <http://planet-mde.org/> Portal for the DSDM sci-
entific and educational community.

m <http://www.model-transformation.org/> Includes
links to conferences and research groups and a very inter-
esting collection of scientific papers.

m <http://www.metamodel.com/> Contains informa-
tion on metamodelling and references to conferences and
news about DSDM.

m <http://www.dsmforum.org/> Dedicated to domain-
specific language development. Includes information about
examples of its application in industry, tools and events.

m <http://www.lcc.uma.es/~av/MDD-MDA/> Site
maintained by the Universidad de Malaga research group
which leads the Red Espafiola de Desarrollo Dirigido por
Modelos (Spanish Network on Model-Driven Develop-
ment) and organizes the DSDM Workshop. Contains in-
formation about MDA, publications on MDA and DSDM
in general, presentations, tools, and mailing lists, and a list
of the Spanish groups researching into DSDM.

List of Acronyms

ATL ATLAS Transformation Language.

CMOF Complete MOF.

DSL Domain Specific Language.

EMF Eclipse Modelling Framework, Eclipse
project.

EMOF Essential MOF.

EMP Eclipse Modelling Project, Eclipse project.

GMF Graphical Modelling Framework, Eclipse
project.

GMT Generative Modelling Technologies, Eclipse
project.

MDA Model-Driven Architecture.

MDD Model Driven Development.

MDE Model Driven Engineering.

MIC Model Integration Computing.

MOF Meta-Object Facility. OMG’s metamodelling
language.

OCL Object Constraint Language.

OMG Object Management Group.

PIM Platform Independent Model. MDA related.

PSM Platform Specific Model. MDA related.

QVT Query View Transformation. OMG’s model
transformation language.

SOA Service Oriented Architecture.

UML Unified Modelling Language.

XMI XML Metadata Interchange. OMG’s model

interchange language.

© Novatica

Model-Driven Software Development

A Brief History of MDA

Andrew Watson

On 8th March 2000 Object Management Group (OMG) announced that its Architecture Board had voted to adopt the
Model-Driven Architecture (MDA) as both the strategic approach to developing OMG’s own integration standards, and
as its recommended application development technique. MDA was devised before the term "Service-Oriented Architec-
ture" (SOA) became fashionable, and when many Business Process Management (BPM) techniques and languages were
in their infancy. However, through a combination of foresight and good fortune MDA techniques are, if anything, more
relevant today in the world of SOA and BPM than they were in 2000. This short history of MDA charts the influences that
led to its creation, shows how its has evolved, and outlines the contributions it can make in the future.

Keywords: Business Process Management (BPM),
Model-Driven, Model-Driven Architecture (MDA), Object
Management Group (OMG), Service-Oriented Architecture
(SOA), Unified Modelling Language (UML).

1 Origins

OMG came into being in the late 1980s as an independ-
ent, not-for-profit industry organisation to specify object-
based middleware that could help solve the growing prob-
lem of integrating IT systems that spanned multiple plat-
forms. The resulting Common Object Request Broker Ar-
chitecture (CORBA®) middleware and its related specifica-
tions became very widely used, and by 1999 an analyst sur-
vey [1] found that "70 percent of respondents cited CORBA
compliance as ‘important’ or ‘very important’ to integra-
tion, outpacing every other factor in the survey".

From the mid-1990s OMG also began developing spe-
cialised middleware-based interoperability standards for
application domains ranging from finance through telecoms
to healthcare. In each of these areas, groups of highly-quali-
fied domain experts devoted several man-years of effort to
specifying standards for domain application components,
using CORBA’s Interface Definition Language (IDL) to
specify the service interfaces that these components would
provide and use. These standard services and the CORBA
middleware they used to communicate formed the basis of
OMG’s Service-Oriented Architecture, known as the Ob-
ject Management Architecture (OMA).

By the late 1990s OMG had used CORBA and IDL to
specify several families of domain-specific services for dif-
ferent industries, and in the process had identified two limi-
tations with this purely middleware-based approach to cre-
ating integration standards:

m IDL provides a precise way to specify the structure
of the data that application components exchange with each
other. However, since the CORBA middleware doesn’t need
to know or constrain the order in which the data are ex-
changed or the semantic relationships between the data
fields, IDL doesn’t provide any way of specifying these parts
of the design. These important application-level constraints
could only be captured using imprecise natural language,

© Novatica

Author

Andrew Watson is Vice President and Technical Director at
OMG. Andrew has overall responsibility for OMG’s technology
adoption process, and also chairs the Architecture Board, the
group of distinguished technical contributors from OMG member
organisations which oversees the technical consistency of
OMG?’s specifications. Previously Andrew researched service
oriented architectures and their type systems with the ANSA
core team in Cambridge, wrote Lisp compilers at Harlequin,
and worked on distributed systems and software engineering at
HP Laboratories. <andrew@omg.org>.

which was becoming more and more of a difficulty as the
domain specifications became more sophisticated.

m The application component designs created by
OMG’s Domain groups were often equally usable with other
middleware architectures; for instance, the Java Transac-
tion Service (JTS)[2] is a translation into pure Java inter-
faces of the functions defined by the CORBA Object Trans-
action Service (OTS)[3]. However, converting OMG’s
specifications from IDL to another platform involves knowl-
edge of both the source CORBA environment and the cho-
sen target, and not all designers have this detailed knowl-
edge. Furthermore, where there are multiple options for
translating an interface element, multiple mappings are pos-
sible; hence different designers would likely generate dif-
ferent (and incompatible) translations.

It became clear that each of OMG’s domain groups in-
corporated a large pool of priceless domain expertise, and
in the process of creating domain interoperability specifi-
cations were actually creating valuable models for standard
subsystems. However, the difficulty of precisely capturing
non-structural aspects of the interfaces or translating the
interfaces into other notations were preventing this valu-
able work being used to its full potential.

2 MDA is Born

To address these concerns, OMG decided to switch from
a middleware-based approach to specifying SOA services
to a platform-independent approach which could capture

UPGRADE vaol. Ix, No. 2, April 2008 7

Model-Driven Software Development

behavioral as well as structural aspects of interoperability.
These Platform-Independent Models (PIMs) could then be
translated via standardised transformation rules into inter-
face specifications for any particular application platform,
such as CORBA, Java, or one of the emerging families of
"Internet Middleware" based on eXtensible Markup Lan-
guage (XML), such as Simple Object Access Protocol / Web
Services Description Language (SOAP/WSDL).

During the mid-1990s OMG had also helped broker
agreement within the fledgling Object-Oriented (OO) visual
modelling community, creating the Unified Modelling Lan-
guage (UML®), a family of 13 diagram types for the visual
representation of different static and dynamic aspects of ap-
plication software design. Applying UML and the Meta-
Object Framework (MOF™), the standardised metadata
framework on which it’s based, to the problem of creating
platform-independent service specifications led to the crea-
tion of MDA. Use of formal, rigorously-defined modelling
languages is the key; only with a precise definition of the mean-
ing of every construct in the language is it possible to mecha-
nise translating the PIM into the implementation artefacts for
the target platforms (such as IDL or Java interfaces), and thereby
achieve the goal of platform independence.

MDA was thus first mooted as a way of creating stand-
ards. However, it was immediately obvious that the same
tools and techniques could be used to build applications;
transforming a precise but abstract design into the frame-
work of an application is a very similar problem to translat-
ing into a platform-specific standard. Depending on the
modelling language being used, it might not be possible to
completely specify a whole application as a PIM, but at the
very least a large part of the application’s static structure
and interface design could be captured and then translated
into code or other platform-specific artefacts. Many appli-
cations use multiple platforms and programming languages
simultaneously; transforming different parts of a common
PIM into complementary Platform Specific Models (PSMs)
for the different platforms used helps address the problem
of maintaining common interface definitions across a vari-
ety of implementation technologies. By creating applica-
tion outlines directly from models, and helping to automati-
cally write the "glue code" between different platforms
within one application, it was initially estimated that even
the early modelling technology available at the time could
be used to create 30-40% of the application code directly
from an MDA PIM, yielding useful increases in software
quality and productivity.

It’s important to note that the PIM is one of the main
products of the MDA design process, not just a transient
stage in the process. If changes are later needed as the speci-
fication or application evolves, it is the PIM, not the gener-
ated artefacts, that are modified. In short, MDA treats de-
sign as a product not a process.

3 OMG Specification Developments to Support

MDA
Once the MDA vision was in place, OMG began work

8 UPGRADE vol. 1x, No. 2, April 2008

to evolve its modelling specifications to better support it.
The main results were the UML 2 revision and ongoing work
on the MOF 2 metamodelling specification.

Although the basic structure and specification of UML
1 and UML 2 are much the same, the detailed design and
underpinnings of UML have been shaped by MDA over the
past 7 years. Even today, many engineers use UML merely
as a way of sketching software designs, as an aide memoire
or a way of documenting or communicating design. Since
sketches are meant to be read by people, not tools, some
imprecision, while undesirable, can be tolerated, or even
go completely unnoticed. When UML is used for only for
sketching, the appearance and readability of the diagrams
matters much more than the underlying representation of
the model itself within the modelling tool. Although UML
1 provided a formal, standard metamodel for each diagram
type, common features of these metamodels had not been
factored out, and there were also some inconsistencies be-
tween the metamodels for different diagrams.

With the advent of MDA, that began to change. OMG
began a major revision of the UML specification to UML
2; one of the aims of this revision was to improve the qual-
ity of the UML metamodel to make it easier to extract in-
formation from them as part of the MDA process. At the
same time, UML tool vendors started to devote more effort
to producing compliant models corresponding to the dia-
grams that their tools were used to create. As a result both
today’s UML and the tools that implement it are much bet-
ter suited to model-driven development techniques.

MOF, the metamodelling foundation on which all mod-
elling languages used for MDA are based, has also evolved
over the last seven years. A new version of the core MOF
specification was released at the same time as UML 2, build-
ing on the experience of MOF 1 and UML 1 to make MOF
into a truly versatile foundation for models and model trans-
formation. The MOF2 Core specification contains the ba-
sic metamodelling framework, and has two compliance
points: EMOF (Essential MOF) and CMOF (Complete
MOF). Further specifications provide extra MOF-related
features. Perhaps the most important is the MOF Query,
View & Transformation (QVT) specification, which pro-
vides standardised mechanisms for making model-to-model
transformations. Such transformations, for example from
PIM to PSM, lie at the heart of MDA, and providing a stand-
ard language for executing them allows libraries of stand-
ard transformations to be created. Other MOF-related stand-
ards include Versioning and Lifecycle, which provides stand-
ard ways to support version control of MOF models. The
work on MOF standardisation continues within OMG, build-
ing on this core set of MOF standards, and providing the
essential tools for the metadata manipulation that under-
pins MDA.

4 Which Modelling Language?

At the time MDA was first mooted, and even more so
today, most software modelling uses UML. By 2004 it was
estimated that more than 2/3 of all industrial applications

© Novatica

Model-Driven Software Development

used at least some UML during their specification phase,
with 82% of developers saying that they planned to use UML
in future [4]. Because of its ubiquity, it was clear from the
start that UML would be the language predominately used
for MDA. However, to help apply UML and MDA to the
widest-possible range of application areas, OMG is also
publishing a rapidly-expanding family of UML profiles
which extend and adapt UML to allow it to represent con-
cepts in specific application domains. Examples include:

m MARTE - AUML Profile for Modelling and Analy-
sis of Real-Time and Embedded systems.

m SysML - This extends UML to support modelling
of complex systems with human and hardware as well as
software components.

m EAIl - A UML profile for Enterprise Application In-
tegration.

m Testing — A UML profile defining a language for de-
signing, visualizing, specifying, analyzing, constructing and
documenting software test systems.

m \oice — A UML profile for modelling voice dialogs
in telecom applications.

In effect, each UML profile creates a customised Do-
main-Specific Language (DSL) for modelling concepts in
that domain. However, because each language is strongly
tied to the well-understood UML syntax and semantics, and
defined using UML’s standard extension mechanism, it’s
easier to learn than a language designed from scratch, and
can be used with existing and well-supported UML and
MDA tools.

Although UML and its profiles are the most widely-used
language for MDA, using UML is not actually an MDA
requirement; completely un-UML-like MOF-based model-
ling languages can be defined and used with MDA. One
recent example is Semantics of Business Vocabulary and
Business Rules (SBVR), a text-based language for repre-
senting business rules. Work is also underway to provide a
MOF foundation for Business Process Modelling Notation
(BPMN™), a popular flowchart-like syntax for creating busi-
ness process diagrams that represent the activities of a busi-
ness process and the flow of control that defines the order
in which they are performed.

5 Specifications Which Have Been Developed
Using MDA

Over the last seven years OMG has created numerous
specifications in a number of vertical domains using the
MDA approach. A few representative examples will give
the flavour of the variety of problems addressed:

m Microarray and Gene Experiment Object Model. A
Platform-Independent Model for the representation of life-
science gene expression data and relevant annotations, along
with a standard mapping onto an XML Document Type
Definition (DTD) for representing and exchanging this data
using XML [5].

m Product Lifecycle Management (PLM) Services. This
specification defines a PIM for standardised services for
use in managing and representing the different configura-

© Novatica

tions and versions a product may be sold under over its life-
time. The specification includes a PIM and a PSM for
WSDL/SOAP [6].

m PIM and PSM for Software Radio Components.
"Software Radio" is a generic term for radio receivers and
transmitters where some or all of the signal processing is
performed by software running on general-purpose proces-
sors, specialised Digital Signal Processors (DSP), or exotic
devices like Field Programmable Gate Arrays (FPGAS). This
five-volume specification provides both Domain-Specific
Languages (defined as UML profiles) for designing Soft-
ware Radios, and PIMs standardising parts of software ra-
dio designs. Mappings of these PIMs onto the PSMs for the
industry-standard CORBA-based Software Communication
Architecture (SCA) are also provided [7].

m Application Management and System Monitoring for
Combat Management Systems. This specification addresses
the problem of centralised management of CMS applica-
tions running on the wide variety of hardware and software
platforms found on modern warships. It includes a PIM and
PSMs for several widely-used platforms including CORBA,
DMTF CIM Managed Object Format and Data Distribu-
tion Service (DDS™) middleware, as well as defining a PSM
for exchange of management data using XML [8].

OMG’s web site has a full list of specifications devel-
oped using MDA [9].

6 MDA and Software Development

One important difference between creating
interoperability specifications and designing software is that
the latter almost always involves modifying and interfac-
ing with existing application code. Although this is often
dismissively termed "legacy integration”, as though it in-
volved working with a few quaint leftovers from a former
age, studies over the last 20 years have repeatedly shown
that IT users spend far more effort on modifying existing
software than on deploying "new" applications [10] [11]
[12]. The original cost of acquiring an application (whether
purchased or developed in-house) is often only 10-20% of
its Total Cost of Ownership (TCO) when software lifetimes
are measured in decades.

If using MDA for software development is going to help
achieve a meaningful reduction in TCO, it clearly has to
address the issue of maintaining and updating existing soft-
ware, since this can account for up to 90% of software’s
true cost.

One way that MDA reduces TCO is by creating new
application code with fewer bugs. Higher-quality code re-
sults in less effort later being spent on problem diagnosis
and remedies, making it easier to adapt the code to new
business needs, and lowering the costs to train and support
users of the system. An informal side-by-side study in 2006
comparing MDA with traditional hand-coding for a new
commercial billing application showed that MDA techniques
produced almost three times as many lines of code per dol-
lar spent, but with less than one third the defect rate discov-
ered during testing (1.1 defects per thousand lines of code

UPGRADE vol. Ix, No. 2, April 2008 9

Model-Driven Software Development

for MDA, 4.1 for traditional coding) [13]. Although the low-
ered coding costs are impressive, the higher code quality
will have a much greater impact on the system’s TCO over
its life.

Having models as a product of the development process
also helps lower the costs of making subsequent modifica-
tions to the system. Maintainers working on existing appli-
cations typically spend more than half of their time simply
trying to understand how the code works before they can
begin to modify it [14]. With MDA, the design models are
one of the products of application development, along with
the code itself, so maintenance involves modifying the
models and regenerating the corresponding parts of the code.
The savings in time spent understanding and then modify-
ing the code can be substantial. In early 2003 a side-by-side
laboratory study of maintenance of MDA-based and non-
MDA-based J2EE applications found that MDA increased
maintainers’ productivity by 37% compared to traditional
code-based maintenance [15].

MDA’s architects have also recognised that not all ap-
plications will have been developed this way, so there will
be times when a team equipped with MDA tools and skills
is faced with modifying an application for which no MDA
model exists. It is therefore essential that there’s some way
of recovering design information from existing software,
even where original designs have been lost (or even never
existed in the first place). Acknowledging this, OMG started
work on "Architecture Driven Modernisation” (ADM)
standards in 2003, two years after the MDA initiative be-
gan.

The first product of the ADM effort is the Knowledge
Discovery Metamodel (KDM) specification, which provides
standard metamodels for documenting and formally repre-
senting existing software assets and their operational envi-
ronments with MOF. KDM defines a common vocabulary
of knowledge related to software engineering artefacts, re-
gardless of the implementation programming language and
runtime platform (a checklist of items that a software min-
ing tool should discover and a software analysis tool can
use. KDM’s common MOF models and interchange format
provide an integration layer between the syntax-specific
parsers used to extract information from raw source code
and the analysis and transformation tools which process
abstract program structure information, thus allowing ex-
port and import of data currently contained within individual
software modernisation tools). In this way KDM can pro-
vide both a common platform to help integrate diverse soft-
ware modernisation tools, and also provide the basis for
bringing knowledge about existing software assets into the
MDA software creation process [16].

Independently of MDA, the KDM specification is also
finding application in the Software Assurance field, to help
analyse existing software to detect security vulnerabilities
and other ways in which it might behave outside its required
specification. As with software modernisation, many tools
are likely to be involved, each producing a portion of the
required knowledge about the software assets. KDM is also

10 UPGRADE vol. 1x, No. 2, April 2008

being used in the Software Assurance field as a standard
way of representing knowledge about software collected
via a variety of different tools.

Creating tools for recovering design knowledge from
existing software is a challenging problem, and OMG’s work
on standards in this area will continue for some time; for
instance, a forthcoming specification will standardise a
metamodel for Abstract Syntax Trees, to facilitate the analy-
sis, visualization and refactoring of application code below
the procedural level supported by KDM. However, the work
in this area is already yielding benefits in helping modify
and update existing application code, rather than merely
encapsulating it unchanged, and have new applications com-
municate with it at arms’ length, as too often happens to-
day.

7 The Future

As business users become increasingly dependent on
Information Technology to deliver products and services,
so problems caused by the inflexibility of IT systems be-
comes ever more pressing. Rather than adapting to the
changing needs of the businesses they supposedly serve, IT
systems’ capabilities increasingly dictate business policy.
Traditional software engineering techniques demand sta-
ble, well-defined requirements and long timescales for cre-
ating systems tailored to users’ needs, yet the business en-
vironment is changing with increasing speed. All the while,
an ever-growing deployed software base is accumulating
post-design modifications that distort its structure to the
point of "software death", where any further modification
(whether to fix a bug or introduce a new feature) in turn
introduces a new bug.

The convergence of MDA with Business Process Man-
agement (BPM) and Service Oriented Architecture (SOA)
offers a road-map for organisations seeking to escape the
straightjacket of software inflexibility.

BPM is an umbrella term for the techniques of identify-
ing, documenting and managing the complete end-to-end
processes an organisation uses to perform an individual task,
especially where this involves the cooperation of multiple
individuals, departments or separate organisations. The doz-
ens or hundreds of processes within an organisation typi-
cally have both human and IT components, and many of
the individual activities within any one process are also used
in conjunction with other activities in other processes. Just
as different organisations have different levels of maturity
in their software production processes, so business organi-
sations have different levels of business process maturity.
OMG’s Business Process Maturity Model (BPMM) [17]
helps organisations discover and improve the level of pre-
cision with which they understand their own processes.
Given well-understood processes, precise yet easily-learned
visual notations like SBVR and BPMN can be used to docu-
ment and communicate them between business stakeholders,
process participants and the engineers building software to
support them.

Service-Oriented Architecture is one of the foundations

© Novatica

Model-Driven Software Development

on which OMG’s technical architecture was built almost 20
years ago, but it has now gained new prominence as a
method of designing, deploying and managing the individual
activities that make up a business process. At the software
level, use of SOA entails building components with well-
defined meta-data that defines both the information they
require from each other and the services that they provide,
allowing tools to orchestrate the late binding of SOA serv-
ices into new processes as the needs of the organisation
change. MDA provides the vital bridge between BPM de-
sign and SOA infrastructure, allowing process models cap-
tured via MOF-based languages like SBVR, BPMN or UML
activity diagrams to be translated into that orchestration
code.

The convergence of model-driven software develop-
ment, service orientation and better techniques for docu-
menting and improving business processes holds out the
promise of rapid, accurate development of software that
serves, rather than dictates, software users’ goals.

8 Conclusion

Put in a historical context, MDA can be seen as the most
recent step in the progressive development of better and
more powerful tools for writing software over the 60 year
history of electronic data processing. The first programmers
write their applications directly in machine code, entering
the bit patterns for instructions from memory and calculat-
ing branch offsets and index register settings by hand. As-
semblers moved programmers one level of abstraction away
from the raw machine, then 3rd Generation Languages
(3GLs) and 4th Generation Languages (4GLs) each added
another level of tooling between the user and the raw ma-
chine, providing abstractions that are progressively closer
to the concepts used by the ultimate user of the IT system.
MDA continues this trend to better tools and increasing
abstraction. There has always been a fierce rearguard ac-
tion (clinging to the efficiency argument) to any increase in
the level of abstraction, but the flexibility, reduced com-
plexity and increased productivity of the abstractions have
always won through in the end [18]. MDA is proving to be
no exception.

References

[1] Gartner Group. "Middleware: what end users are buy-
ing and why", February 1999.

[2] Sun Microsystems. "Java Transaction Service 1.0
Specification", <http://java.sun.com/products/jts/>,
1999.

[3] OMG. "Object Transaction Service 1.2.1", <http://
doc.omg.org/formal/01-11-03>, 2001.

[4] A. Zeichick. " UML Adoption Making Strong
Progress"”, SD Times, 15th August 2004.

[5] OMBG. " Gene Expression Specification 1.1", <http://
doc.omg.org/formal/03-10-01>, October 2003.

[6] OMG. "Product Lifecycle Management Services 1.0.1",
<http://doc.omg.org/formal/06-04-03>, April 2006.

[7] OMG. "PIM and PSM for Software Radio Components

© Novatica

Specification 1.0", <http://doc.omg.org/formal/07-03-
01>, March 2007.

[8] OMG. "Application Management and System Moni-
toring for CMS Systems Beta 2 specification”, <http:/
/doc.omg.org/dtc/07-05-02>, May 2007.

[9] OMBG. Specification Catalogue, <http://www.omg.org/
technology/documents/spec_catalog.htm>.

[10] L. Erlikh. "Leveraging Legacy System dollars for E-
business”, IEEE IT Pro, May/June 2000.

[11] A. Eastwood. "Firm Fires Shots at Legacy Systems",
The Standish Group, 1993.

[12] J. Moad. "Maintaining the competitive edge",
Datamation 61-62, 64, 66., 1990.

[13] Steve Hudson. Private communication, 2006.

[14] B.P. Lientz, E. Swanson. "Problems in application soft-
ware maintenance”, Communications of the ACM 24
(11), 763-769, 1981.

[15] The Middleware Company. "Model Driven Develop-
ment for J2EE Utilizing a Model Driven Architecture
(MDA) Approach - Maintainability Analysis”, Janu-
ary 2004.

[16] OMG. " Architecture-Driven Modernization: Knowl-
edge Discovery Meta-Model 1.0 beta3", <http://
doc.omg.org/ptc/2007-03-15>, March 2007.

[17] OMG. "Business Process Maturity Model 1.0 betal”,
<http://doc.omg.org/dtc/2007-07-02>, July 2007.
[18] D. Otway. "Abstract & Automate", Architecture
Projects Management Ltd, <http://www.ansa.co.uk/

ANSATech/94/Primary/102001.pdf>, May 1994.

UPGRADE vaol. 1x, No. 2, April 2008 11

Model-Driven Software Development

MDA Manifestations

Bran Selic

In 2004 the author, along with several colleagues, published an article titled "An MDA Manifesto", which outlined a
strategic vision for Model-Driven Development (MDD). That article identified the key elements that characterized this
approach to software development and its value proposition. The present article contains an assessment of the progress
made since then towards fulfilling that vision, based on practical experience in applying MDD in industry. The key
impediments that are hindering a more extensive realization of that vision are identified and categorized. Finally, a long-

term strategy is outlined for overcoming these hurdles.

Keywords: Model-Driven Architecture (MDA), Model-
Driven Development (MDD), Object Management Group
(OMG).

1 Introduction

Almost four years ago, some of my colleagues at IBM
Rational and | co-authored an article entitled "An MDA
Manifesto", which was first published in the MDA Journal
and then again in the eponymous book by Frankel and Parodi
[1]. The primary intent was to articulate our shared vision
of model-driven development (MDD). IBM and its Rational
business unit in particular were pioneers in the application
of modeling methods to software development.

Jim Rumbaugh and Grady Booch, both of Rational (and
both of whom were authors of the Manifesto article), were
the primary designers of the Unified Modeling Language
(UML), much of it based on their industry-leading earlier
work in model-based object-oriented methodologies. Ra-
tional’s modeling tools were and still are market leading
MDD tools.

It is both interesting and instructive to reflect on that
vision in the light of subsequent practical experience with
MDD since the article was written. Has anything funda-
mental changed in the vision? What are the current states of
practice and adoption of MDD? What stands in the way
and how serious is it? The purpose of this article is to ex-
amine some of these issues and also to investigate potential
strategies that would enable broader application of MDD in
industry and a more comprehensive realization of the vi-
sion behind it.

It would have been ideal if all of the original authors
were involved in this assessment, but, due to a number of
operational reasons this was not feasible (for one, | have
since retired and have a bit more time at my disposal than
my co-authors). Nevertheless, | have maintained close con-
tact with all of them and, although I certainly cannot claim
to represent their views, | am confident that we share pretty
much the same vision and objectives outlined in the origi-
nal article.

2 The MDA Manifesto Revisited
A "manifesto” is an explicit declaration of set of princi-

12 UPGRADE vol. 1, No. 2, April 2008

Author

Bran Selic is currently President of Malina Software Corp. In
2007, Bran retired from IBM Canada, where he was an IBM
Distinguished Engineer responsible for defining the strategic
direction for software modeling tools for the Rational brand.
He is currently the chair of the OMG task force responsible for
the UML standard. Bran is also an adjunct professor of computer
science at Carleton University in Ottawa, Canada.
<bselic@ca.ibm.com>.

ples and a plan of action for reaching some objectives. The
original article identified three keystones of the Model
Driven Architecture (MDA) initiative from the Object Man-
agement Group (OMG) [2], as interpreted by IBM’s tech-
nical team responsible for its MDD strategy. These were:

m Use of higher levels of abstraction in specifying both
the problem to be solved and the corresponding solution,
relative to traditional software development methods (NB:
in the original article, this was referred to as "direct repre-
sentation™).

m Increased reliance on computer-based automation to
support analysis, design, and implementation.

m Use of industry standards as a means facilitating
communications, product interworking, and technological
specialization.

The following is a brief summary of the nature and ra-
tionale of each of these key elements. Readers interested in
a more in-depth description should refer to the Manifesto
article itself.

2.1 The Issue

In essence, the primary problem that MDD is intended
to address is the often overwhelming complexity involved
in designing and implementing modern software. The mag-
nitude of this problem just keeps growing, as our demands
for more sophisticated functionality and more dependable
software increase (as Grady Booch notes, in some ways
"software runs the world" [3]). It is, therefore, critical for
us to understand the sources of this complexity lies and what
can be done about them.

© Novatica

Model-Driven Software Development

In his seminal work on software development, "The
Mythical Man-Month" [4], Fred Brooks Jr. identifies two
kinds of complexity: essential complexity, which is inher-
ent to a particular problem and, consequently, unavoidable,
and arbitrary complexity, which is due to the methods and
tools used to address the problem. Brooks points out that
software designers face more than their share of arbitrary
complexity.

For example, they often have to cope with the idiosyn-
crasies of traditional programming languages, in which a
single uninitialized variable or misaligned pointer can have
disastrous consequences, whose impact can extend far be-
yond the localized context in which the error was made.
Similarly, many crucial and difficult to detect errors can be
introduced in the process of translating complex domain-
specific concepts into corresponding computer-program
implementations.

The basic motivation behind MDD can be reduced to
the elimination of arbitrary complexity, through the defini-
tion of improved methods and tools.

2.2 Abstraction

Abstraction is a primary technique by which human
minds cope with complexity. By hiding from view what is
irrelevant or of little consequence, a complex system or situ-
ation can be reduced to something that is comprehensible
and manageable. When it comes to software, it is extremely
useful to abstract away technological implementation de-
tail and deal with the domain concepts in the most direct
way possible. For instance, it is typically easier to view and
comprehend a state machine as a graph, rather than to see it
in the form of nested "case" statements in some program-
ming language rife with distracting low-level syntactical
details.

The MDD approach to increasing levels of abstraction
is to define domain-specific modeling languages whose
concepts closely reflect the concepts of the problem do-
main whilst minimizing or obscuring aspects that relate to
the underlying implementation technologies.

To facilitate communications and understanding, such
languages use corresponding domain-specific syntactical
forms. This often means using non-textual representations
such as graphics and tables, which more readily convey the
essence of domain concepts than text.

2.3 Automation

Automation is the most effective method for boosting
productivity and quality. Software, of course, is an excel-
lent medium for exploiting automation, since the computer
is in many ways the ideal machine for constructing com-
plex machines. In case of MDD, the idea is to utilize com-

! On the other hand, many enterprises that have achieved suc-
cesses with MDD are inclined to keep them confidential in the be-
lief that their use of MDD is an important advantage they hold over
competitors.

© Novatica

puters to automate any repetitive tasks that can be mecha-
nized, tasks which humans do not perform particularly ef-
fectively. This includes, but is not limited to, the ability to
transform models expressed high-level domain-specific
concepts into equivalent computer programs, as well as into
different models suitable for design analyses (e.g., perform-
ance analyses, timing analyses). In case of executable
modeling languages computer-based automation can also
be used to simulate high-level models to help evaluate the
suitability of a proposed design in all stages of develop-
ment.

2.4 Standards

MDA is OMG’s initiative to support MDD with a set of
open industry standards. Such standards provide multiple
benefits, including the ability to exchange specifications
between complementary tools as well as between equiva-
lent tools from different vendors (thereby avoiding vendor
lock-in). Standards allow tool builders to focus on their prin-
ciple area of expertise, without having to recreate and com-
pete capabilities provided by other vendors. Thus, a per-
formance analysis tools need not include a model editing
capability. Instead, it can interact with a model editing tool
using a shared standard .

As part of MDA, the OMG has defined a basic set of
MDD standards for modeling languages (e.g., UML, MOF),
model transform definition (MOF QVT), MDD process
definition (SPEM), and a number of other areas. It is some-
what ironic that MDA is sometimes viewed as an approach
to MDD that is contrary to the domain-specific languages
approach, this is not the case, since many of the MDA stand-
ards are specifically designed to support specialization for
domain-specific needs. The MOF language, for instance, is
a language for defining domain-specific languages. Further-
more, UML can also be used to define different domain-
specific languages by taking advantage of its profile mecha-
nism. This not only allows reuse of the effort and ideas that
went into the design of UML but also enables the reuse of
existing UML tools. In many ways, this approach to do-
main-specific language design overcomes one of the major
barriers that has impeded such custom approaches in the
past: the lack of adequate tooling as well as the cost of main-
taining it and evolving it. Thus, it is possible to reap the
benefits of both standardization and customization.

3 The State of the Practice in MDA

While one can argue against concrete realizations of the
MDA idea, such as the technical features of UML or MOF,
it is hard to argue with any of its basic premises. Increasing
the levels of abstraction and automation and the use of stand-
ards, executed properly, are all undeniably useful. Further-
more, there have been numerous examples of successful
applications of MDA in large-scale industrial projects (cf.
[5] [6])!. Yet, there is still a significant amount of contro-
versy about whether or not MDA is useful. It is fair to say
that the dominant perception among today’s software prac-
titioners is that MDA has yet to prove itself, or, at the ex-

UPGRADE vaol. 1x, No. 2, April 2008 13

Model-Driven Software Development

treme end of the opinions scale, that it is a distracting aca-
demic fairy tale, concocted by software theologians who
are disconnected from any practical reality?.

I am unaware of any published results, but my personal
estimate from numerous discussions with software devel-
opment teams in industry is that the penetration of model-
based methods hovers around 10%. If this stuff is really as
good as claimed, why isn’t everyone using it?

It turns out that there are numerous and varied reasons
for this glacial pace of adoption. They can be roughly clas-
sified into technical, economic, and cultural.

3.1 Technical Hurdles

A major problem that plagues many software products
these days is usability. In the case of MDA, it is mostly
manifested in MDA tools. Although often endowed with
diverse and very powerful functionality, such tools almost
invariably tend to be extremely difficult to learn and to use.
Users are typically faced with a bewildering spectrum of
menu items arranged in seemingly arbitrary groupings.
Common operations that should be easy to use often re-
quire complex and counterintuitive tool manipulations. One
of the reasons for this is that, ironically, many of the tool
designers and implementers are not themselves practition-
ers of MDD and, therefore, do not have a sense for how the
tools should look and behave.

Consequently, poor tool usability is one of the biggest
current impediments to greater penetration of MDD meth-
ods in practice.

A second major technical problem is that there is still
very little theoretical underpinning for MDD. Much of the
MDD technology that is available today was developed in
ad hoc ways by industrial teams who were trying to solve
specific problems in circumstances that do not afford the
luxuries of reflection and generalization. As a result, when
it comes to supporting MDD, we do not yet know precisely
what works, what does not, and why. The result is not only
gratuitous diversity but also substandard and inadequate
technologies. In contrast, traditional programming-oriented
methods and technologies have been studied amply and one
can rely on a sound body of theory to ensure that common
problems are avoided and solid and proven solutions are
chosen.

The lack of a sound theory of MDD is also manifested
in interoperability problems between MDD tools that often
result in highly undesirable vendor lock-in for users. This
is true even in the presence of standards.

3.2 Cultural Hurdles
Despite the availability of hard evidence of the success

2 Steve Mellor tells the following anecdote that epitomizes the cur-
rent state of affairs in MDA: When he was asked over ten years
ago about when he expected MDA to become mainstream, he sug-
gested that it would likely happen within the following year and a
half to two. And he has been giving the same answer to that ques-
tion ever since.

14 UPGRADE vol. 1x, No. 2, April 2008

of MDA in practice, there is still insufficient awareness of
its potential and its capabilities among practitioners who
could be exploiting it. However, even in cases where a
project team might be fully aware of the potential benefits
of applying MDD, there is still a problem in adopting it due
to the inevitable overheads whenever new methods and tools
are introduced into a running production environment. It
takes time to learn and adjust to new ways of working (not
to mention that it may be necessary to support the old and
the new methods and tools during phased cutovers). In to-
day’s highly competitive environment, where time-to-mar-
ket is a fundamental driver of development, this overhead
is difficult to accept, since the investment payback is gener-
ally deferred to subsequent projects.

However, perhaps the most difficult issue to overcome
of all is the conservative mindset of many software practi-
tioners. Because they tend to invest vast amounts of time
and effort in mastering specific implementation technolo-
gies (which, due to their often arbitrary complexity, do re-
quire significant investment), many practitioners define their
expertise in terms of computing technologies they have
mastered rather than the domain in which they are working.
For instance, they are much more likely to view themselves
as, say, J2EE experts rather than as financial software ex-
perts. Consequently, there is often major resistance to tech-
nological change, even if the new technology could lead to
better solutions for the specific domain problem on which
they are working. This same technology-centered culture
means that many software developers have a very superfi-
cial interest in and understanding of how the products they
implement are to be used, which, in turn, leads to poor prod-
uct usability discussed above.

One major barrier in overcoming all such cultural is-
sues is the sheer number of software practitioners, which is
estimated between 10 and 15 million [7]. This is, of course,
a huge inertial mass that is very difficult to shift from its
present cultural base.

3.3 Economic Hurdles

Today’s prevailing business environment is focused on
relatively short-term return on investment (ROI). Public
companies report their results on a quarterly basis and a
failure to meet profit expectations in a given quarter is likely
to result in a falling stock prices and a shift of stockholders
to other apparently more immediately profitable businesses.
This has the unfortunate effect that most investment in tech-
nological development tends to be short-term. Consequently,
it is hard to justify longer-term investments in new soft-
ware development methods and tools, particularly if the
payback is not guaranteed. And, to be fair, switching to MDD
does not guarantee success, partly because of the other is-
sues discussed above. For example, the risks of introducing
MDD into a software development organization can be
greatly mitigated if it is led by individuals with prior expe-
rience. Unfortunately, such expertise is still quite difficult
to find and secure. And, with the aforementioned absence
of a systematic foundation for MDD, organizations are of-

© Novatica

Model-Driven Software Development

ten left to fend for themselves through a risky process of
trial and error.

Clearly, these are all substantial barriers to overcome
and it seems likely that the pace of introduction of MDD in
industrial practice will remain a slow for several years to
come. In the next section, we describe some initiatives that
could help accelerate this trend.

4 The Way Forward

There are at least three possible areas in which to ad-
dress the problem of increasing the penetration of MDD in
practice:

m Education

m Research

m Standardization

4.1 Education

Given the difficulties of changing the dominant tech-
nology-centric culture noted above, it is necessary to initi-
ate such change through education, starting at the under-
graduate level. This means instilling an understanding and
respect for users among software engineering students. A
primary need is comprehending the value that the product
to be developed has for its customers and users. That, in
turn, typically requires an understanding of the economic
and business context of the product. In other words, what is
needed is insight that extends beyond the immediate tech-
nological issues. Software engineering graduates must have
an understanding and working knowledge of economic and
business factors that influence what they design and build®.
As Charles Babbage put it: "It is doubly important for the
man of science to mix with the world".

In addition, designing software products that are used
by people requires an understanding of human psychology.
At present, the prevailing attitude among software devel-
opers seems to be that human factors constitute a second-
order concern, to be addressed by user-interface design spe-
cialists once the main system architecture has been final-
ized. Often this is viewed as a mere matter of designing
suitable graphical interfaces and menu items. The under-
standing that usability requirements might have a funda-
mental impact on the architecture of a software system is
still rare among software professionals.

Last but not least, it is necessary to increase the intro-
duction of MDD methods into software engineering educa-
tion. Most current undergraduate curricula already include
some basic elements of model-based engineering, such as
courses on UML. But, with no systematic theoretical foun-
dation on which to base this, the results are often haphazard
and inadequate. To address that, more research is needed
into the theory behind MDD.

3 One additional benefit of a broader education is an understand-
ing when technological solutions are appropriate and when they
are not. There are many examples when technological solutions
have created more problems than they solved.

© Novatica

4.2 Research

The research community has embraced the notion of
MDD, partly because they see it is an opportunity to effect
a dramatic sea change in software technology. For exam-
ple, modeling languages can be designed to avoid the arbi-
trary complexity of current programming languages. This
complexity is sometimes a barrier to the application of
highly-effective engineering methods, such as the use of
mathematical analyses to predict key system characteris-
tics before the system is constructed. All too often in soft-
ware, such characteristics remain unknown until the com-
plete system is designed and built, at which point the cost
of redesign can be prohibitive. New modeling languages
can be designed that are specifically designed to support
such analyses.

Yet, despite the eagerness with which researchers have
accepted MDD, there are some issues with the current re-
search efforts. One of them is that much of the research
focuses on particular point problems, in large part because
research funding is provided by industrial partners who are
primarily interested in solving their immediate problems.
Consequently, there is insufficient exploration of the theo-
retical foundations of MDD. What is needed, therefore, is
an overall map of the MDD research space in which the
various areas of exploration are clearly identified as are the
relationships between them. Only when this is properly
understood will we be able to talk of a comprehensive and
systematic theory of MDD.

One recent initiative is intended to deal with this issue:
the newly formed Centre of Excellence for Research in
Adaptive Systems (CERAS) [8]. This is a multi-year re-
search effort organized and funded by the Ontario Centres
of Excellence (specifically, its Centre for Communications
and Information Technology) and the IBM Center for Ad-
vanced Studies, with the objective of exploring the
foundational issues behind a number of related emerging
computing technologies, including MDD. One of its pri-
mary objectives in the domain of MDD is to define a com-
prehensive framework for MDD research (the research map
mentioned above). Another key objective is to provide a
communal focal point and a kind of clearinghouse for MDD
research worldwide. In addition to exploring the founda-
tions of MDD, CERAS will be doing research in the fol-
lowing areas (and, likely, others):

m Modeling language semantics and design (includ-

ing domain-specific languages).

m Model transformations (including model-to-model

and model-to-code).

m Model analysis (safety and liveness property check-
ing).

Model-based verification.
Model management.

MDD methods and processes.
MDD tooling.

4.3 Standards
The role of standards, de facto or de iure, is key to the

UPGRADE vaol. 1x, No. 2, April 2008 15

Model-Driven Software Development

success of any widely used technology. Standardization will
not only allow the distilling of proven results in a vendor-
neutral manner, it will also facilitate specialization by pro-
viding a common foundation for interworking between
specialties. Standardization bodies, such as the OMG are
not only useful, but necessary. However, given the highly
competitive nature of the industry and the unprecedented
flexibility of software, it is difficult to expect software ven-
dors to voluntarily conform to standards. Therefore, users
of MDD tooling and software professionals in general
should do their utmost to pressure vendors to contribute
and adhere to software standards

Clearly, there should be a close link between research,
industry, and standards bodies. It is critical that only things
that are both well understood and proven in practice be
standardized. Premature standardization can be counterpro-
ductive.

5 Summary and Conclusions

MDD has the potential to provide significant improve-
ments in the development of software. It is based on sound
and time-proven proven principles: higher levels of abstrac-
tion, higher levels of automation, and standardization. Fur-
thermore, there are numerous verifiable examples of suc-
cessful applications of MDD in industrial practice, that are
existence proofs of its viability and value. Yet, the use of
MDD is still an exception rather than the norm. This is due
to the not insignificant hurdles that need to be overcome.
Although many of these are technical in nature, what may
be surprising to some is that the most difficult hurdles to
overcome are the ones stemming from the current idiosyn-
cratic culture of software development. This culture places
far too much emphasis on technology and not enough on
technology users and their needs. It is a very pervasive cul-
ture that is sustained in part by the current business climate
that is heavily focused on short-term gain and, thus, dis-
courages investment in new methods and tools.

In such circumstances the best that can be expected is a
gradual introduction of MDD, facilitated primarily through
changes in educational curricula and investment in
foundational research. Software engineers must be much
better educated in human factors and the workings of the
marketplace; they should view technology more as a tool
rather than as an end unto itself. At the same time, we need
to research and develop a systematic theory of MDD, to
ensure that the corresponding technology and methods are
well understood, useful, and dependable.

References

[1] G. Boochetal. "An MDA Manifesto", en Frankel, D.
and Parodi, J. (eds.) The MDA Journal: Model Driven
Architecture Straight from the Masters. Meghan-Kiffer
Press, Tampa, Florida, 2004 (pp. 133-143).

[2] OMG. MDA Guide (version 1.0.1), OMG document
number omg/03-06-01, <http://www.omg.org/docs/
omg/03-06-01.pdf>, 2003.

[3] G. Booch. Saving Myself. <http://booch.com/architec-

16 UPGRADE vol. 1x, No. 2, April 2008

[4]

[5]
6]

[7]

8]

ture/blog.jsp?archive=2004-00.html>, July 22, 2004.
F. Brooks. The Mythical Man — Essays on Software
Engineering (Anniversary edition). Addison-Wesley,
1995. ISBN: 0201835959.

OMG. MDA Success Stories (web page). <http://
www.omg.org/mda/products_success.htm>.

N.J. Nunes et al. Industry Track papers in UML
Modeling Languages, and Applications — 2004 Satel-
lite Activities (Revised Selected Papers), Lisbon, Por-
tugal, October 2004, Lecture Notes in Computer Sci-
ence, vol. 3297, Springer-Verlag, 2005 (pp. 94-233).
ISBN: 3540250816.

IDC. The 2007 Worldwide Professional Developer
Model. IDC document number #207143. <http://
www.idc.com/getdoc.jsp?containerld=207143>, 2007.
Ontario Centres of Excellence (OCE). Centre of Ex-
cellence for Research in Adaptive Systems (CERAS).
<https://www.cs.uwaterloo.ca/twiki/view/CERAS/
CerasOverview>.

© Novatica

Model-Driven Software Development

The Domain-Specific IDE

Steve Cook and Stuart Kent

Years of pursuing efficiencies in software development through model-driven development techniques have led to the
recognition that domain-specific languages can be an effective weapon in the developer’s armoury. But these techniques
by themselves are necessarily limited; only by assimilating them into the overall context of a domain-specific development

process and tools can their real power be harnessed.

Keywords: Domain-Specific Languages (DSL), Do-
main-Specific Tools (DST), Model-Driven Architecture
(MDA), Model-Driven Development (MDD).

1 Introduction

The development of information systems is getting in-
creasingly complex as they become more and more distrib-
uted and pervasive. Today’s advanced software developer
must be familiar with a wide range of technologies for de-
scribing software, including modern object-oriented pro-
gramming languages, eXtensible Markup Language (XML)
and its accessories (schemas, queries, transformations),
scripting languages, interface definition languages, proc-
ess description languages, database definition and query
languages, and more. Translating from the requirements of
a business problem to a solution using these technologies
requires a deep understanding of the many architectures and
protocols that comprise a distributed solution. Furthermore,
end-users expect the result to be fast, available, scaleable
and secure even in the face of unpredictable demand and
unreliable network connections. It can be a daunting task.

In areas other than software development, such as elec-
tronic consumer products (TVs and HiFis), cameras, cars
and so on, we have come to expect a high degree of reli-
ability at low cost, coupled increasingly in many cases with
the ability to have items customized to satisfy individual
needs. These expectations are met because of advances in
industrial manufacturing processes made over many dec-
ades. Building a car or a television involves the coordina-
tion of a complex chain of manufacturing steps, many of
which are wholly or partially automated.

We would like to apply similar principles to the con-
struction of software. The main difficulty in doing so is that
we have not yet developed techniques for software descrip-
tion that allow different concerns within the software de-
velopment process to be effectively separated and effec-
tively integrated. Although we increasingly use different
languages for different tasks (programming languages for
writing application logic, XML for transmission of data
between application components, Structured Query Lan-

© Novatica

Authors

Steve Cook works at Microsoft, and is the software architect of
the Domain-Specific Language Tools which are part of Microsoft
Visual Studio. He is currently working on future versions of
these tools. Previously he was a Distinguished Engineer at IBM,
which he represented in the UML 2.0 specification process at
the OMG. He has worked in the IT industry for more than 30
years, as architect, programmer, author, consultant and teacher.
He is a member of the Editorial Board of the Software and Systems
Modeling Journal, a Fellow of the British Computer Society, and
holds an Honorary Doctor of Science degree from De Montford
University (United Kingdom). <steve.cook@microsoft.com>.

Stuart Kent is a Senior Program Manager on the Visual Studio
team in Microsoft. Stuart joined Microsoft in 2003 to work on
tools and technologies for visual modelling. This culminated in
the Domain-Specific Language Tools, which are now part of
the Visual Studio core tooling platform and are described in a
recent book (Domain-Specific Development with Visual Studio
DSL Tools) that he co-authored. Before joining Microsoft, Stuart
was an academic and consultant, with a reputation in modelling
and model driven development. He has over 50 publications to
his name and made significant contributions to the UML 2.0
and MOF 2.0 specifications. He is a member of the editorial
board of the Software and Systems Modeling journal, and on
the steering committee for the MoDELS series of conferences.
He has a PhD in Computing from Imperial College, London.
<stukent@microsoft.com>.

guage (SQL) for storing and retrieving data in databases,
Web Services Description Language (WSDL) for describ-
ing the interfaces to web-facing components) there are many
complexities involved in getting these languages to work
effectively together.

2 Domain Specific Modelling Languages
2.1 Model Driven Development (MDD)
Model driven development is an approach to software

development where the main focus of attention shifts from
writing code by hand to dealing with higher level abstrac-

UPGRADE vaol. 1x, No. 2, April 2008 17

Model-Driven Software Development

tions (models). The approach aims to increase productivity,
improve reliability and be more predictable.

Typically, a model driven development solution devel-
ops incrementally in stages, as follows.

In the first stage, a solution starts out as a way of getting
an initial boost in productivity by generating code that is
duplicated within and between software applications, in-
stead of writing it by hand. In this situation, the model pro-
vides the information that is variable in amongst the dupli-
cated code, and the code generators merge this with boiler-
plate code to produce the final result. As it is unlikely that
all the required code can be generated from the model, the
architecture of the software application may need to be ad-
justed to ensure that the generated code is kept separate
from any hand written code.

In the next stage, as the code generators become more
complex, it is realized that much of the duplication can be
removed by creating a framework using constructs, where
available, in the underlying programming language. This
generally won’t remove all the duplication, but it will re-
move bloat from the code generators and make them easier
to maintain.

In a third stage, it may be possible to remove the need
for code generation altogether, and write the framework so
that it directly interprets the model.

In subsequent stages, once models have become a first
class citizen in the software development process, they can
then be treated as the target of transformations from yet
more abstract models.

However, there is a lot to consider, even in the first stage,
including:

m What language should the model be expressed in?

m What’s the best way to write the code generators?

m How do we expose the code generators to the users
of the tools, for example when a ship-blocking bug
needs to be fixed?

m How do we ensure that generated code can be mixed
with non-generated code so that regeneration does
not overwrite the non-generated code?

m How do we ensure that generated code builds and
exhibits the correct behaviour?

m How is the generated code tested?

m How does a developer debug through the generated
code? Should he need to?

There aren’t easy answers for all these questions. In-
deed, in the next section we argue that questions such as
these require us to think in terms of making the whole tool-
ing environment domain specific, with models and code
generators being only a part of a more holistic, integrated
environment. Nevertheless, when models are an important
part of the overall solution, the most burning question is the
first: what language is used to express the models? That’s
the focus of the remainder of this section, and, when con-

1 The OMG also uses the trademarked term Model Driven Archi-
tecture (MDA) for its particular take on MDD.

18 UPGRADE vol. 1x, No. 2, April 2008

sidering an answer, it’s worth noting that answers to the
other questions involve writing tools, including code gen-
erators, which must be able to access the models program-
matically. The range of situations in which model driven
development provides a productive approach depends di-
rectly on how easy it is to build and test those tools.

2.2 UML

A language often associated with MDD is the Unified
Modeling Language (UML), which is a standard of the
Object Management Group (OMG)!.The development of
the UML started during the early 1990s, when it emerged
as a unification of the diagramming approaches for object-
oriented systems developed by Grady Booch, James
Rumbaugh and Ivar Jacobson. First standardized in 1997,
it has been through a number of revisions, most recently
the development of version 2.

UML is large and complicated, version 2 especially so.
To understand UML in any depth it is important to under-
stand how it is used. We follow the lead of Martin Fowler,
author of "UML Distilled," one of the most popular intro-
ductory books on UML. Martin divides the use into
UMLAsSketch, UMLAsBIlueprint, and UMLAS
ProgrammingLanguage (for more details see <http://
martinfowler.com/bliki>).

UMLAsSKketch is very popular. Sketches using UML can
be found on vast numbers of whiteboards in software de-
velopment projects. To use anything other than UMLASs
Sketch as a means of creating informal documentation for
the structure of an object-oriented design would today be
seen as perverse. In this sense, UML has been extremely
successful, and entirely fulfilled the aspirations of its crea-
tors who wanted to eliminate the gratuitous differences be-
tween different ways of diagrammatically depicting an ob-
ject-oriented design.

UMLAsProgrammingLanguage is an initiative sup-
ported by a rather small community, which is unlikely to
gain much headway commercially, and which we will not
dwell upon.

UMLASsBIueprint characterizes the use of UML in MDD.
In this role, UML suffers from two problems:

m Bloat. In most MDD solutions, it is likely that only a
small subset of the language will be applicable. So, although
tools implementing UML do generally provide rich program-
matic access to models created using them, the surface area
of the API against which tools - such as code generators -
are written is large, which just makes it that much harder to
code against. Also, unless the chosen graphical UML editor
allows significant parts of the language to be “switched off’,
the user of the MDD solution needs to have external guid-
ance on how to use the UML tool within the context of that
solution.

m Not domain specific. In order to drive code genera-
tors in MDD, it’s necessary to develop models that fit the
domain, that can supply the exact information required by
the code generators to fill the gaps in the boilerplate and
produce fully executable code, and which conform to the

© Novatica

Model-Driven Software Development

necessary validation rules that ensure the code generated is
well-formed and builds correctly. UML does support an
extension mechanism, called UML Profiles, which allows
additional data and validation rules to be added to a model.
But this cannot do anything about fundamental conceptual
mismatches between a domain and UML.: at best, profiles
allow UML to be used for MDD where there is a reason-
able conceptual match between the domain and UML, and
all that is required is some additional data and validation
rules to make the models precise enough to drive code gen-
erators.

2.3 Domain-Specific Modelling Languages

An alternative to using the UML is to define a domain-
specific language specially designed for the MDD solution.

At first sight, this seems like a significant undertaking,
especially when you consider that in an MDD context the
language needs to be supported by an editor, often graphi-
cal, which validates models and delivers them in a machine-
readable form, as well as providing rich API access to those
models. Indeed, a reason that implementers of MDD solu-
tions may have opted for the sub-optimal UML-based ap-
proach is that it means they don’t have to build their own
graphical editor!

However, this is changing. There are now environments
available such as Microsoft’s Domain Specific Language
Tools (DSL Tools) [1], Eclipse Graphical Modeling Frame-
work (GMF) [2] and MetaCase’s MetaEdit+ [3] which sig-
nificantly reduce the cost of creating your own graphical,
domain specific modelling language and editor. These tools
generate a clean API for accessing models, and also include
support for writing code generators. The editors that are
created support graphical modelling using custom graphi-
cal notations, and allow rich model validation constraints
to be included.

One criticism aimed at using DSLs is that you can end
up creating a range of slightly different languages, one for
each MDD solution. This can be confusing to users, lead-
ing to a lot of very similar looking but subtly different lan-
guages and editors, and also confusing to tool builders who
might end up writing against similar but subtly different
APIs. In contrast, in the UML approach you have a base
language which can be shared between different solutions,
and then have an extensibility mechanism which allows the
base language to be customized for each MDD solution.
The problem with the UML approach is not the principle of
having a base language that is then extended and custom-
ized, but the fact that the UML has not been architected
well to support this. For this approach to be effective, the
UML should have been defined as a collection of small,
loosely coupled, unconstrained base languages capturing
specific modelling styles (class diagram style, component
style, state diagram style, sequence style etc.), where any
detailed content was defined through extensions (e.g. the

2 See <http://www.martinfowler.com/bliki/InternalDsIStyle.html>.

© Novatica

Java, .Net and Object-Oriented analysis class diagram ex-
tensions).

3. The Domain-Specific IDE

We’ve suggested that model-driven development can be
made more efficient by designing and implementing do-
main specific modelling languages aimed at specific soft-
ware development problems. But there’s much more to soft-
ware development than modelling, and we’d like to make
the entire software development process more efficient, not
just the modelling part of it.

Models form one aspect of the software development
experience. We must integrate this aspect with others across
the entire lifecycle: envisioning, architecture, design, cod-
ing, debugging, testing, deploying and managing. We are
increasingly discovering that this entire lifecycle is domain-
specific, and that implementing domain-specific software
development languages goes hand-in-hand with implement-
ing domain-specific processes.

Narrowing the domain means building more tools. These
are not simply modelling tools, or domain-specific exten-
sions to programming languages. The domain-specific
lifecycle also requires domain-specific commands, user in-
terfaces, processes and guidance. Elsewhere we’ve described
these requirements as "software factories" [4]. We’ve found
that this can be an overloaded term, referring as it does to
several distinct concepts:

m anorganization designed to develop a particular kind
of software;

m aset of processes that execute to deliver a particular
kind of software;

m an integrated set of interactive software tools de-
signed to support such processes.

In this article we are mainly interested in the third of
these, which we’ll call here the Domain-Specific Interac-
tion Development Environment, or Domain-Specific IDE.
We’ll look now at some of the requirements for this.

3.1 Agility

Agile programming embraces evolutionary change
throughout the software development lifecycle and is increas-
ingly recognized as best practice for software development.
The Domain-Specific IDE must support agile software devel-
opment practices. The IDE must avoid processes or commands
that force the developer into premature commitments that are
expensive and time-consuming to reverse. Examples of these
are code generation steps or "wizards" that cannot be repeated
at a later time. The use of models within the IDE can help with
this, as illustrated by Microsoft’s Web Services Software Fac-
tory: Modeling Edition [5].

3.2 Integrating Multiple Languages

The definition of software inevitably involves a combi-
nation of languages. Even in the most traditional environ-
ment there will be distinct languages for programming and
for defining and manipulating data. Today’s popular soft-
ware stacks involve multiple languages: for .NET they in-

UPGRADE vaol. 1x, No. 2, April 2008 19

Model-Driven Software Development

clude C#, Visual Basic, SQL, and many dialects of XML
e.g. XAML, with domain-specific languages added to the
mix.

As soon as the artefacts implemented by these languages
cross-reference each other, as they must, we find breakdowns
in agility. For example, renaming a class or a namespace in
a code file can cause compilation errors in a XAML file
which refers to the class or namespace. Finding and cor-
recting such errors can be costly, and a better solution would
be a refactoring engine that spans multiple languages. This
means that new domain-specific languages should be able
to participate in such a refactoring engine, in order to be
first-class citizens in the IDE.

One approach to alleviating such breakdowns is to ex-
pand the scope of one language to cover more of the
lifecycle. Good examples of this approach are the latest
versions of C# and VB .NET, which incorporate LINQ (Lan-
guage-Integrated Query) giving strongly-typed integrated
capabilities for accessing data stores. Further down this route
would be more facilities in these languages for enabling
embedded DSLs?. Few truly multi-paradigm languages ex-
ist today, though. LISP was the first example of a multi-
paradigm language, and has fallen out of widespread use in
favour of the strongly-typed object oriented programming
languages which are commonly in use today. We’re sure
that these languages do not represent the ultimate destiny
of programming: new developments in programming lan-
guages such as F# [6] enable considerable increases in ex-
pressive power and the design of rich abstractions. F# is
complicated, though, and truly mastering it may be out of
the reach of many software developers.

But however powerful the language, it is unlikely ever
to be the case that a single language can successfully span
the entire software lifecycle. Whether through limitations
in languages or through limitations in their users, techniques
for integrating multiple languages will inevitably be re-
quired.

3.3 Code Generation and "*Reverse Engineering™

Code generation is an increasingly prevalent feature of
modern IDEs that allows designs to be expressed in do-
main-specific terms. Code is often generated from models,
defined in a domain-specific modelling language or in UML.
Code can also be generated from other artefacts such as
XML dialects, domain-specific textual languages, data held
in databases, data captured from a What You See Is What
You Get (WYSIWYG) editor (e.g. Windows Forms) or via
User Interface (Ul) automation (wizards, snippets etc). The
advantages of code-generation are a substantial reduction
in cost and errors for the creation of repetitive boilerplate
code. Code generation does, however, have several poten-
tial disadvantages:

m Non-repeatability. A badly-designed code generation
system can lose the developer’s input after generation, forc-
ing the developer to commit to a set of values and making it
difficult to change their mind.

m Hand-modification. A system that requires code to

20 UPGRADE vol. i, No. 2, April 2008

be modified by hand after it has been generated may pre-
vent a re-generation without erasing the hand-modifications,
unless markers are placed in the generated code to indicate
the hand-written parts, which can make the code unpleas-
ant to read.

m Difficulty of interfacing generated and hand-writ-
ten code. Languages features such as C#’s partial classes,
in which a single class can be partially defined in multiple
files, are essential to enable the combination of generated
and hand-written code.

m Difficulty of modification. If the generated code is
not what is required, for example it needs to be modified to
introduce additional aspects such as logging or events, then
it may be necessary to change the code generator itself to
make such modifications. Such changes can be error-prone
and incur a considerable test burden.

In the early days of model-driven development there was
a strong tendency amongst the vendors of model-driven tools
to claim the capability to do “reverse engineering”, i.e. to
create a model by reading and parsing a codebase. It is wrong
to think of such a procedure as the inverse of code genera-
tion. Useful tools can be created for visualizing a large
codebase, for example showing namespaces, dependencies,
class hierarchies, call graphs etc. These tools operate at the
same level of abstraction as the code and are used to help
understand it at that level. By contrast, code generation
schemes transform representations from a domain to an-
other, more general domain. It is possible to reverse the
generation process to visualize generated code in terms of
the source artefacts from which it is generated, but it is not
generally feasible to extract domain-specific representations
from an arbitrary hand-written codebase.

3.4 Validation, Debugging and Testing

One of the most compelling advantages of domain-spe-
cific representations is the ability to validate software arte-
facts at an appropriate level of abstraction. It is much easier,
for example, to establish that communication paths in a lay-
ered architecture conform to the a