
* This monograph will be also published in Spanish (full version printed; summary, abstracts, and some
articles online) by Novática, journal of the Spanish CEPIS society ATI (Asociación de Técnicos de
Informática) at <http://www.ati.es/novatica/>.

UPGRADE is the European Journal for the
Informatics Professional, published bimonthly
at <http://www.upgrade-cepis.org/>

Publisher
UPGRADE is published on behalf of CEPIS (Council of European Pro-
fessional Informatics Societies, <http://www.cepis.org/>) by Novática
<http://www.ati.es/novatica/>, journal of the Spanish CEPIS society ATI
(Asociación de Técnicos de Informática, <http://www.ati.es/>)

UPGRADE monographs are also published in Spanish (full version
printed; summary, abstracts and some articles online) by Novática

UPGRADE was created in October 2000 by CEPIS and was first
published by Novática and INFORMATIK/INFORMATIQUE, bi-
monthly journal of SVI/FSI (Swiss Federation of Professional
Informatics Societies, <http://www.svifsi.ch/>)

UPGRADE is the anchor point for UPENET (UPGRADE European
NETwork), the network of CEPIS member societies’ publications, that
currently includes the following ones:
• Informatica, journal from the Slovenian CEPIS society SDI
• Informatik-Spektrum, journal published by Springer Verlag on behalf

of the CEPIS societies GI, Germany, and SI, Switzerland
• ITNOW, magazine published by Oxford University Press on behalf of

the British CEPIS society BCS
• Mondo Digitale, digital journal from the Italian CEPIS society AICA
• Novática, journal from the Spanish CEPIS society ATI
• OCG Journal, journal from the Austrian CEPIS society OCG
• Pliroforiki, journal from the Cyprus CEPIS society CCS
• Pro Dialog, journal from the Polish CEPIS society PTI-PIPS
• Tölvumál, journal from the Icelandic CEPIS society ISIP

Editorial TeamEditorial Team
Chief Editor: Llorenç Pagés-Casas
Deputy Chief Editor: Francisco-Javier Cantais-Sánchez
Associate Editor: Rafael Fernández Calvo

Editorial Board
Prof. Wolffried Stucky, CEPIS Former President
Prof. Nello Scarabottolo, CEPIS Vice President
Fernando Piera Gómez and Llorenç Pagés-Casas, ATI (Spain)
François Louis Nicolet, SI (Switzerland)
Roberto Carniel, ALSI – Tecnoteca (Italy)

UPENET Advisory Board
Matjaz Gams (Informatica, Slovenia)
Hermann Engesser (Informatik-Spektrum, Germany and Switzerland)
Brian Runciman (ITNOW, United Kingdom)
Franco Filippazzi (Mondo Digitale, Italy)
Llorenç Pagés-Casas (Novática, Spain)
Veith Risak (OCG Journal, Austria)
Panicos Masouras (Pliroforiki, Cyprus)
Andrzej Marciniak (Pro Dialog, Poland)
Thorvardur Kári Ólafsson (Tölvumál, Iceland)
Rafael Fernández Calvo (Coordination)

English Language Editors: Mike Andersson, David Cash, Arthur
Cook, Tracey Darch, Laura Davies, Nick Dunn, Rodney Fennemore,
Hilary Green, Roger Harris, Jim Holder, Pat Moody, Brian Robson

Cover page designed by Concha Arias Pérez
"Golden Ratio" / © ATI 2008
Layout Design: François Louis Nicolet
Composition: Jorge Llácer-Gil de Ramales

Editorial correspondence: Llorenç Pagés-Casas <pages@ati.es>
Advertising correspondence: <novatica@ati.es>

UPGRADE Newslist available at
<http://www.upgrade-cepis.org/pages/editinfo.html#newslist>

Copyright
© Novática 2008 (for the monograph)
© CEPIS 2008 (for the sections UPENET and CEPIS News)
All rights reserved under otherwise stated. Abstracting is permitted
with credit to the source. For copying, reprint, or republication per-
mission, contact the Editorial Team

The opinions expressed by the authors are their exclusive responsibility

ISSN 1684-5285

Monograph of next issue (June 2008)

"Next Generation
Technology-Enhanced Learning"

(The full schedule of UPGRADE is available at our website)

 Vol. IX, issue No. 2, April 2008

2 Editorial
New UPENET Partners — Niko Schlamberger (President of CEPIS)

2 From the Chief Editor’s Desk
Welcome to our Deputy Chief Editor — Llorenç Pagés-Casas
(Chief Editor of UPGRADE)

4 Presentation. MDA® at the Age of Seven: Past, Present and Future
— Jean Bézivin, Antonio Vallecillo-Moreno, Jesús García-Molina,
and Gustavo Rossi

7 A Brief History of MDA — Andrew Watson

12 MDA Manifestations — Bran Selic

17 The Domain-Specific IDE — Steve Cook and Stuart Kent

22 Model Intelligence: an Approach to Modeling Guidance — Jules
White, Douglas C. Schmidt, Andrey Nechypurenko, and Egon Wuchner

29 Model Differences in the Eclipse Modelling Framework — Cédric
Brun and Alfonso Pierantonio

35 Model-Driven Architecture® at Eclipse — Richard C. Gronback
and Ed Merks

40 Model-Driven Web Engineering — Nora Koch, Santiago Meliá-
Beigbeder, Nathalie Moreno-Vergara, Vicente Pelechano-Ferragud,
Fernando Sánchez-Figueroa, and Juan-Manuel Vara-Mesa

46 From Informatik Spektrum (GI, Germany, and SI, Switzerland)
High Performance Computing
The TOP500 Project: Looking Back over 15 Years of Supercomputing
— Hans Werner Meuer

62 From Mondo Digitale (AICA, Italy)
Project Management
Critical Factors in IT Projects — Marco Sampietro

68 CEPIS Projects
Selected CEPIS News — Fiona Fanning

CEPIS NEWS

UPENET (UPGRADE European NETwork)

Monograph: Model-Driven Software Development
(published jointly with Novática*)
Guest Editors: Jean Bézivin, Antonio Vallecillo-Moreno, Jesús García-Molina,
and Gustavo Rossi

2 UPGRADE Vol. IX, No. 2, April 2008 © CEPIS

Editorial Section

As UPGRADE readers very likely know, our journal is the
anchor point for UPENET (UPGRADE European Network).
This network of CEPIS member societies’ publications, cre-
ated in 2004, has as its main purpose to make available to the
Information and Communication Technology communities
(professional, academic, business, government), mainly in
Europe but also worldwide, the wealth of knowledge and ex-
perience accumulated by these publications, as well as to fos-
ter cooperation among them.

To this end UPGRADE republishes, in English, in its sec-
tion UPENET, articles from the syndicated publications while
these can republish, in their own languages, articles published
in UPGRADE or in any of the syndicated publications.

Through these years several CEPIS member societies’ pub-
lications have joined the network and now we are proud to
announce that two new journals have decided to join in, so
augmenting the UPENET membership to nine.

The two new UPENET partners are:
Informatica, quarterly journal published, in English, by

the Slovenian CEPIS member society Slovensko društvo
Informatika (Slovenian Society Informatika, SDI, http://
www.drustvo-informatika.si). Informatica started in 1977, one
year after SDI was established.

Tölvumál, biannual journal published, in Icelandic, by
the Icelandic CEPIS society Skýrslutæknifélagið (Icelandic

Editorial

New UPENET Partners

It is my pleasure to announce that the Executive Commit-
tee of CEPIS, the governing body of our publisher, has ap-
pointed Francisco-Javier Cantais-Sánchez for the new posi-
tion of Deputy Chief Editor of UPGRADE.

Javier, a young Spanish lawyer and economist who has
worked as an IT consultant for important firms for several years,
will cooperate closely with the Chief Editor in the diverse tasks

From the Chief Editor´s Desk

Welcome to our Deputy Chief Editor

required to publish a new issue of our digital journal every
other month.

Welcome on board, Javier!

Llorenç Pagés-Casas
Chief Editor of UPGRADE

<pages AT ati DOT es>

Society for Information Processing, ISIP, http://www.sky.is).
It was created in 1976. By the way, Tölvumál means "compu-
ter issues" in Icelandic.

Accordingly, Informatica’s Managing Editor, Matjaz
Gams, and Thorvardur Kári Ólafsson, Chief Editor of
Tölvumál, become members of the UPENET Advisory Board,
the former on behalf of the Chief Editor, Anton P. Zeleznikar.

Let me express, on behalf of the Executive Committee of
CEPIS and in my name, my satisfaction on this eventful fact
which shows that our networking initiative is moving in the
right direction even though, of course, it still has room for
growth and improvement. I therefore sincerely hope that this
announcement will motivate further CEPIS member societies
to reflect upon what they have to offer to increase visibility of
their work, to inform their constituencies about the work of
others, to broaden UPENET, and to enrich the UPGRADE
content. I am sure that our new partners will contribute to en-
hance the scope and quality of materials as well as the rel-
evance and usefulness of the UPGRADE contents for the ICT
community in Europe and worldwide.

Dobrodošli, velkomin, welcome!

Niko Schlamberger
President of CEPIS

<president AT cepis DOT org>

UPGRADE Vol. IX, No. 2, April 2008 3© Novática

Editorial Section

4 UPGRADE Vol. IX, No. 2, April 2008 © Novática

Model-Driven Software Development

 Presentation

MDA® at the Age of Seven: Past, Present and Future
Jean Bézivin, Antonio Vallecillo-Moreno, Jesús García-Molina, and Gustavo Rossi

The Guest Editors

Jean Bézivin is a professor of Computer Science at the
Université de Nantes, France, and member of the ATLAS
research group recently created in Nantes (INRIA & LINA) by
Patrick Valduriez. He has been very active in Europe in the
Object-Oriented community and initiated the ECOOP (European
Conference on Object-Oriented Programming) series of
conferences (with Pierre Cointe), the TOOLS series of
conferences (with Bertrand Meyer), and the <<UML>>/
MoDELS (Model Driven Engineering Languages and Systems)
series of conferences (with Pierre-Alain Muller). He has also
organized several workshops at OOPSLA (Object-Oriented
Programming, Systems, Languages, and Applications), such as
those in 1995 on "Use Case Technology", in 1998 on "MDD
with CDIF", at ECOOP in 2000 on "Model Driven Engineering",
etc. His present research interests include legacy reverse
engineering, general model engineering and, in particular, model-
transformation languages and frameworks, and the building of
model-engineering platforms. <jean.bezivin@univ-nantes.fr>.

Antonio Vallecillo-Moreno is an associate professor at the
Department of Computer Science of the Universidad de Mála-
ga, Spain. His research interests include model-driven software
development, componentware, open distributed processing, and
the industrial use of formal methods. He holds BSc and MSc
degrees in mathematics, and a PhD degree in Computer Science

The Model-Driven Architecture (MDA) initiative was
launched by the OMG (Object Management Group) in late
2000 to propose a new way to consider the development
and maintenance of information systems, using models as
the essential artefacts of the software development process.

In the MDA approach, models are the key elements used
to direct the course of understanding, design, construction,
testing, deployment, operation, administration, maintenance,
and modification of systems. MDA also raises the level of
abstraction by enabling specifications that use different
models to focus on different concerns, and by automating
the production of such specifications and the software that
meets them. In particular, MDA differentiates between plat-
form-independent models and platform-specific models.
Thus, the basic functionality of the system can be separated
from its final implementation; the business logic can be sepa-
rated from the underlying platform technology, etc. The
transformations between models enable the automated im-

plementation of a system from the different models defined
for it or alternatively allow abstract models to be recon-
structed from legacy code for the purpose of software mod-
ernization or migration. In addition, MDA allows further
models of the system to be defined, each one focusing on a
specific concern, at the right level of abstraction. These spe-
cific models are described using Domain Specific Languages
(DSLs) and are related by Model Transformation (MT)
specifications. They can also drive tools that automate the
model transformations into the final implementations.

Since the emergence of MDA much has happened in the
field of modern system and software model engineering. A
variety of new acronyms (MDD, MDE, MIC, ADM, MBA,
etc.) are appearing to delimit the constantly extending scope
of application of core modelling techniques. In addition,
the evolution towards modelling practices has combined
with the Open Source Software movement in environments
like Eclipse to reinforce this important paradigm shift.

from the Universidad de Málaga. He is the Universidad de
Málaga representative at ISO and the OMG, and a member of
ACM, IEEE, IEEE Standards Associations, and the IEEE
Computer Society. <av@lcc.uma.es>.

Jesús García-Molina is a full professor at the Faculty of
Computer Science at the Universidad de Murcia, Spain where
he leads the Software Technology Research Group. His research
is focused on model-driven software development, in particular
model transformation languages, embedded DSL, frameworks,
and model-driven modernization. He received his PhD in Science
from the Universidad de Murcia. <jmolina@um.es>.

Gustavo Rossi is a full professor at the Faculty of Computer
Science at the Universidad Nacional de La Plata, Argentina
where he heads LIFIA, a research Laboratory in Computer
Science. He has a PhD from PUC-Rio, Brazil. His research
interests are: web design methods, separation of concerns in
web engineering and in mobile computing. He is one of the
developers of the Object-Oriented Hypermedia Design Model
(OOHDM), a mature model-driven design method for Web
applications. He has published many papers on these issues in
specialized journals and conferences. <gustavo@lifia.
info.unlp.edu.ar>.

UPGRADE Vol. IX, No. 2, April 2008 5© Novática

Model-Driven Software Development

Seven years after MDA was originally proposed the time
is now ripe to look at the old and new objectives, the achieve-
ments so far, the incomplete realizations, the difficulties
encountered, the ongoing efforts, the research roadmap, and
the work still to be done in order to fulfil the initial prom-
ise. With this special issue we hope to contribute to such an
assessment.

For this task we have been fortunate enough to receive
a set of contributions from some of the most relevant and
influential people in MDA and Model-Driven Engineering.
The papers of this special issue reflect the personal views
and insights of some of the creators of MDA on how things
have progressed since the initial MDA proposal, and what
might be the way ahead; some of the new practices and
tools for performing software model engineering; and some
of the projects and domains in which MDA is being suc-
cessfully applied.

In the first group of papers we have a contribution from
Andrew Watson, from OMG, who presents the official view
on MDA together with a brief history which charts the in-
fluences that led to its creation, shows how it has evolved,
and outlines the contributions it can make in the future. Then,
Bran Selic revisits his influential paper "An MDA Mani-
festo" in the light of all that has happened in recent years.
The original article identified the key elements that charac-
terized the MDA approach and its value proposition. His
present article contains an assessment of the progress made
since then towards fulfilling that vision, identifies the key
obstacles that are hindering a more extensive realization of
that vision, and outlines a long-term strategy for overcom-
ing these hurdles.

The second group of papers describes some of the new
practices and tools for software modelling. Steve Cook and
Stuart Kent describe the Microsoft approach to model en-
gineering using Domain Specific Languages, and explain
how powerful these languages can be when used within the
appropriate software development processes and supported
by the right kind of tools. Then, Jules White, Douglas C.
Schmidt, Andrey Nechypurenko, and Egon Wuchner in-
troduce the new concept of Model Intelligence, which uses
domain constraints to guide modellers in the writing of cor-
rect models, something which is especially important in the
case of models of industrial software systems comprising
of tens of thousands of elements. The third paper of this
group is written by Cédric Brun and Alfonso Pierantonio,
who analyse one of the key operations in the embryonic
and fundamental fields of model management and model
evolution: Model Comparison.

Finally, in the third group of papers we have the article
by Rich Gronback and Ed Merks, who present one of the
most successful contributions to the development and wide-
spread acceptance of MDA: The Eclipse Modelling Project.
Then, Nora Koch, Santiago Meliá-Beigbeder, Nathalie
Moreno-Vergara, Vicente Pelechano-Barberá, Fernando
Sánchez-Figueroa and Juan Manuel Vara-Mesa show how
MDA principles can be successfully applied in the Web
Engineering domain, not only to build complex Web appli-

cations, but also to achieve a smooth interoperability be-
tween existing Web Engineering methods and tools.

We sincerely hope that the readers will enjoy this spe-
cial issue as much as we, the editors, have enjoyed talking
with the authors of the papers and merging their excellent
contributions into a comprehensive assessment of the cur-
rent state of MDA and the future opportunities (and chal-
lenges) facing MDA if it is to fulfil its original vision in the
realm of Model-Driven Engineering.

6 UPGRADE Vol. IX, No. 2, April 2008 © Novática

Model-Driven Software Development

Useful References on Model-Driven Software Development

The following references, along with those included in
the articles in this monograph, will help our readers to dig
deeper into this field.

Books
A. Kleppe, J. Warmer, W. Bast. "MDA Explained.

The Model Driven Architecture: Practice and Promise".
Addison-Wesley, 2003. ISBN: 032119442X. A very clear
and rigorous introduction to MDA, approached from a prac-
tical point of view.

David Frankel. "Model Driven Architecture. Apply-
ing MDA to Enterprise Computing". OMG Press, 2003.
Analysing the application of MDA within the context of
enterprise software systems.

Thomas Stahl, Markus Völter. "Model-Driven Soft-
ware Development". John Wiley, 2006. ISBN: 0470025700.
An excellent introduction to model-driven development.
The most comprehensive text written about Dynamic Sys-
tems Development Method (DSDM).

Tony Clark, Andy Evans, Paul Sammut, James
Willans. "Applied Metamodelling. A Foundation for Lan-
guage Driven Development". Provides a comprehensive
vision of metamodelling and DSL creation. Downloadable
from <http://www.ceteva.com/book.html>.

Jack Greenfield, Keith Short, Steve Cook, Stuart Kent.
"Software Factories: Assembling Applications with Patterns,
Models, Frameworks, and Tools". John Wiley, 2004. ISBN:
0471202843. Describes the approach of software factories
which combine software product lines with model-driven de-
velopment. Also includes an assessment of MDA and its stand-
ards. An excellent book on software development.

Jos Warmer, Anneke Kleppe. "The Object Constraint
Language: Getting Your Models Ready for MDA", 2nd edi-
tion, Addison Wesley, 2003. ISBN: 0321179366. Consid-
ered to be the foremost guide to OCL.

Events
Every year a number of MDA and DSDM related confer-

ences and workshops are held, among the most important of
which are the European Conference on Model Driven Archi-
tecture (EC-MDA), Model Driven Engineering Languages
and Systems (MoDELS), and the International Conference
on Model Transformation (ICMT). For the last four years Spain
has hosted the Taller sobre Desarrollo de Software Dirigido
por Modelos (Model-Driven Software Development Work-
shop) as part of the Jornadas de Investigación en Ingeniería
de Software y Bases de Datos (JISBD or Conference on Soft-
ware Engineering and Databases).

OMG
At OMG’s web site (Object Management Group, <http:/

/www.omg.org>) you can find standards specifications for
MDA (MOF, XMI, etc.) and MDA’s official web page
<http://www.omg.org/mda/>.

Eclipse
The Eclipse Modeling project aims to promote model-

directed development within the Eclipse community. From
<http://www.eclipse.org/modeling/> you can access all re-
lated subprojects (EMF, GMF, GMT, etc.).

Web Sites
<http://planet-mde.org/> Portal for the DSDM sci-

entific and educational community.
<http://www.model-transformation.org/> Includes

links to conferences and research groups and a very inter-
esting collection of scientific papers.

<http://www.metamodel.com/> Contains informa-
tion on metamodelling and references to conferences and
news about DSDM.

<http://www.dsmforum.org/> Dedicated to domain-
specific language development. Includes information about
examples of its application in industry, tools and events.

<http://www.lcc.uma.es/~av/MDD-MDA/> Site
maintained by the Universidad de Málaga research group
which leads the Red Española de Desarrollo Dirigido por
Modelos (Spanish Network on Model-Driven Develop-
ment) and organizes the DSDM Workshop. Contains in-
formation about MDA, publications on MDA and DSDM
in general, presentations, tools, and mailing lists, and a list
of the Spanish groups researching into DSDM.

List of Acronyms
ATL ATLAS Transformation Language.
CMOF Complete MOF.
DSL Domain Specific Language.
EMF Eclipse Modelling Framework, Eclipse

project.
EMOF Essential MOF.
EMP Eclipse Modelling Project, Eclipse project.
GMF Graphical Modelling Framework, Eclipse

project.
GMT Generative Modelling Technologies, Eclipse

project.
MDA Model-Driven Architecture.
MDD Model Driven Development.
MDE Model Driven Engineering.
MIC Model Integration Computing.
MOF Meta-Object Facility. OMG’s metamodelling

language.
OCL Object Constraint Language.
OMG Object Management Group.
PIM Platform Independent Model. MDA related.
PSM Platform Specific Model. MDA related.
QVT Query View Transformation. OMG’s model

transformation language.
SOA Service Oriented Architecture.
UML Unified Modelling Language.
XMI XML Metadata Interchange. OMG’s model

interchange language.

UPGRADE Vol. IX, No. 2, April 2008 7© Novática

Model-Driven Software Development

Keywords: Business Process Management (BPM),
Model-Driven, Model-Driven Architecture (MDA), Object
Management Group (OMG), Service-Oriented Architecture
(SOA), Unified Modelling Language (UML).

1 Origins
OMG came into being in the late 1980s as an independ-

ent, not-for-profit industry organisation to specify object-
based middleware that could help solve the growing prob-
lem of integrating IT systems that spanned multiple plat-
forms. The resulting Common Object Request Broker Ar-
chitecture (CORBA®) middleware and its related specifica-
tions became very widely used, and by 1999 an analyst sur-
vey [1] found that "70 percent of respondents cited CORBA
compliance as ‘important’ or ‘very important’ to integra-
tion, outpacing every other factor in the survey".

From the mid-1990s OMG also began developing spe-
cialised middleware-based interoperability standards for
application domains ranging from finance through telecoms
to healthcare. In each of these areas, groups of highly-quali-
fied domain experts devoted several man-years of effort to
specifying standards for domain application components,
using CORBA’s Interface Definition Language (IDL) to
specify the service interfaces that these components would
provide and use. These standard services and the CORBA
middleware they used to communicate formed the basis of
OMG’s Service-Oriented Architecture, known as the Ob-
ject Management Architecture (OMA).

By the late 1990s OMG had used CORBA and IDL to
specify several families of domain-specific services for dif-
ferent industries, and in the process had identified two limi-
tations with this purely middleware-based approach to cre-
ating integration standards:

IDL provides a precise way to specify the structure
of the data that application components exchange with each
other. However, since the CORBA middleware doesn’t need
to know or constrain the order in which the data are ex-
changed or the semantic relationships between the data
fields, IDL doesn’t provide any way of specifying these parts
of the design. These important application-level constraints
could only be captured using imprecise natural language,

A Brief History of MDA

AndrAndrAndrAndrAndrew Wew Wew Wew Wew Watsonatsonatsonatsonatson

On 8th March 2000 Object Management Group (OMG) announced that its Architecture Board had voted to adopt the
Model-Driven Architecture (MDA) as both the strategic approach to developing OMG’s own integration standards, and
as its recommended application development technique. MDA was devised before the term "Service-Oriented Architec-
ture" (SOA) became fashionable, and when many Business Process Management (BPM) techniques and languages were
in their infancy. However, through a combination of foresight and good fortune MDA techniques are, if anything, more
relevant today in the world of SOA and BPM than they were in 2000. This short history of MDA charts the influences that
led to its creation, shows how its has evolved, and outlines the contributions it can make in the future.

Author

Andrew Watson is Vice President and Technical Director at
OMG. Andrew has overall responsibility for OMG’s technology
adoption process, and also chairs the Architecture Board, the
group of distinguished technical contributors from OMG member
organisations which oversees the technical consistency of
OMG’s specifications. Previously Andrew researched service
oriented architectures and their type systems with the ANSA
core team in Cambridge, wrote Lisp compilers at Harlequin,
and worked on distributed systems and software engineering at
HP Laboratories. <andrew@omg.org>.

which was becoming more and more of a difficulty as the
domain specifications became more sophisticated.

The application component designs created by
OMG’s Domain groups were often equally usable with other
middleware architectures; for instance, the Java Transac-
tion Service (JTS)[2] is a translation into pure Java inter-
faces of the functions defined by the CORBA Object Trans-
action Service (OTS)[3]. However, converting OMG’s
specifications from IDL to another platform involves knowl-
edge of both the source CORBA environment and the cho-
sen target, and not all designers have this detailed knowl-
edge. Furthermore, where there are multiple options for
translating an interface element, multiple mappings are pos-
sible; hence different designers would likely generate dif-
ferent (and incompatible) translations.

It became clear that each of OMG’s domain groups in-
corporated a large pool of priceless domain expertise, and
in the process of creating domain interoperability specifi-
cations were actually creating valuable models for standard
subsystems. However, the difficulty of precisely capturing
non-structural aspects of the interfaces or translating the
interfaces into other notations were preventing this valu-
able work being used to its full potential.

2 MDA is Born
To address these concerns, OMG decided to switch from

a middleware-based approach to specifying SOA services
to a platform-independent approach which could capture

8 UPGRADE Vol. IX, No. 2, April 2008 © Novática

Model-Driven Software Development

behavioral as well as structural aspects of interoperability.
These Platform-Independent Models (PIMs) could then be
translated via standardised transformation rules into inter-
face specifications for any particular application platform,
such as CORBA, Java, or one of the emerging families of
"Internet Middleware" based on eXtensible Markup Lan-
guage (XML), such as Simple Object Access Protocol / Web
Services Description Language (SOAP/WSDL).

During the mid-1990s OMG had also helped broker
agreement within the fledgling Object-Oriented (OO) visual
modelling community, creating the Unified Modelling Lan-
guage (UML®), a family of 13 diagram types for the visual
representation of different static and dynamic aspects of ap-
plication software design. Applying UML and the Meta-
Object Framework (MOF™), the standardised metadata
framework on which it’s based, to the problem of creating
platform-independent service specifications led to the crea-
tion of MDA. Use of formal, rigorously-defined modelling
languages is the key; only with a precise definition of the mean-
ing of every construct in the language is it possible to mecha-
nise translating the PIM into the implementation artefacts for
the target platforms (such as IDL or Java interfaces), and thereby
achieve the goal of platform independence.

MDA was thus first mooted as a way of creating stand-
ards. However, it was immediately obvious that the same
tools and techniques could be used to build applications;
transforming a precise but abstract design into the frame-
work of an application is a very similar problem to translat-
ing into a platform-specific standard. Depending on the
modelling language being used, it might not be possible to
completely specify a whole application as a PIM, but at the
very least a large part of the application’s static structure
and interface design could be captured and then translated
into code or other platform-specific artefacts. Many appli-
cations use multiple platforms and programming languages
simultaneously; transforming different parts of a common
PIM into complementary Platform Specific Models (PSMs)
for the different platforms used helps address the problem
of maintaining common interface definitions across a vari-
ety of implementation technologies. By creating applica-
tion outlines directly from models, and helping to automati-
cally write the "glue code" between different platforms
within one application, it was initially estimated that even
the early modelling technology available at the time could
be used to create 30-40% of the application code directly
from an MDA PIM, yielding useful increases in software
quality and productivity.

It’s important to note that the PIM is one of the main
products of the MDA design process, not just a transient
stage in the process. If changes are later needed as the speci-
fication or application evolves, it is the PIM, not the gener-
ated artefacts, that are modified. In short, MDA treats de-
sign as a product not a process.

3 OMG Specification Developments to Support
MDA

Once the MDA vision was in place, OMG began work

to evolve its modelling specifications to better support it.
The main results were the UML 2 revision and ongoing work
on the MOF 2 metamodelling specification.

Although the basic structure and specification of UML
1 and UML 2 are much the same, the detailed design and
underpinnings of UML have been shaped by MDA over the
past 7 years. Even today, many engineers use UML merely
as a way of sketching software designs, as an aide memoire
or a way of documenting or communicating design. Since
sketches are meant to be read by people, not tools, some
imprecision, while undesirable, can be tolerated, or even
go completely unnoticed. When UML is used for only for
sketching, the appearance and readability of the diagrams
matters much more than the underlying representation of
the model itself within the modelling tool. Although UML
1 provided a formal, standard metamodel for each diagram
type, common features of these metamodels had not been
factored out, and there were also some inconsistencies be-
tween the metamodels for different diagrams.

With the advent of MDA, that began to change. OMG
began a major revision of the UML specification to UML
2; one of the aims of this revision was to improve the qual-
ity of the UML metamodel to make it easier to extract in-
formation from them as part of the MDA process. At the
same time, UML tool vendors started to devote more effort
to producing compliant models corresponding to the dia-
grams that their tools were used to create. As a result both
today’s UML and the tools that implement it are much bet-
ter suited to model-driven development techniques.

MOF, the metamodelling foundation on which all mod-
elling languages used for MDA are based, has also evolved
over the last seven years. A new version of the core MOF
specification was released at the same time as UML 2, build-
ing on the experience of MOF 1 and UML 1 to make MOF
into a truly versatile foundation for models and model trans-
formation. The MOF2 Core specification contains the ba-
sic metamodelling framework, and has two compliance
points: EMOF (Essential MOF) and CMOF (Complete
MOF). Further specifications provide extra MOF-related
features. Perhaps the most important is the MOF Query,
View & Transformation (QVT) specification, which pro-
vides standardised mechanisms for making model-to-model
transformations. Such transformations, for example from
PIM to PSM, lie at the heart of MDA, and providing a stand-
ard language for executing them allows libraries of stand-
ard transformations to be created. Other MOF-related stand-
ards include Versioning and Lifecycle, which provides stand-
ard ways to support version control of MOF models. The
work on MOF standardisation continues within OMG, build-
ing on this core set of MOF standards, and providing the
essential tools for the metadata manipulation that under-
pins MDA.

4 Which Modelling Language?
At the time MDA was first mooted, and even more so

today, most software modelling uses UML. By 2004 it was
estimated that more than 2/3 of all industrial applications

UPGRADE Vol. IX, No. 2, April 2008 9© Novática

Model-Driven Software Development

used at least some UML during their specification phase,
with 82% of developers saying that they planned to use UML
in future [4]. Because of its ubiquity, it was clear from the
start that UML would be the language predominately used
for MDA. However, to help apply UML and MDA to the
widest-possible range of application areas, OMG is also
publishing a rapidly-expanding family of UML profiles
which extend and adapt UML to allow it to represent con-
cepts in specific application domains. Examples include:

MARTE – A UML Profile for Modelling and Analy-
sis of Real-Time and Embedded systems.

SysML – This extends UML to support modelling
of complex systems with human and hardware as well as
software components.

EAI – A UML profile for Enterprise Application In-
tegration.

Testing – A UML profile defining a language for de-
signing, visualizing, specifying, analyzing, constructing and
documenting software test systems.

Voice – A UML profile for modelling voice dialogs
in telecom applications.

In effect, each UML profile creates a customised Do-
main-Specific Language (DSL) for modelling concepts in
that domain. However, because each language is strongly
tied to the well-understood UML syntax and semantics, and
defined using UML’s standard extension mechanism, it’s
easier to learn than a language designed from scratch, and
can be used with existing and well-supported UML and
MDA tools.

Although UML and its profiles are the most widely-used
language for MDA, using UML is not actually an MDA
requirement; completely un-UML-like MOF-based model-
ling languages can be defined and used with MDA. One
recent example is Semantics of Business Vocabulary and
Business Rules (SBVR), a text-based language for repre-
senting business rules. Work is also underway to provide a
MOF foundation for Business Process Modelling Notation
(BPMN™), a popular flowchart-like syntax for creating busi-
ness process diagrams that represent the activities of a busi-
ness process and the flow of control that defines the order
in which they are performed.

5 Specifications Which Have Been Developed
Using MDA

Over the last seven years OMG has created numerous
specifications in a number of vertical domains using the
MDA approach. A few representative examples will give
the flavour of the variety of problems addressed:

Microarray and Gene Experiment Object Model. A
Platform-Independent Model for the representation of life-
science gene expression data and relevant annotations, along
with a standard mapping onto an XML Document Type
Definition (DTD) for representing and exchanging this data
using XML [5].

Product Lifecycle Management (PLM) Services. This
specification defines a PIM for standardised services for
use in managing and representing the different configura-

tions and versions a product may be sold under over its life-
time. The specification includes a PIM and a PSM for
WSDL/SOAP [6].

PIM and PSM for Software Radio Components.
"Software Radio" is a generic term for radio receivers and
transmitters where some or all of the signal processing is
performed by software running on general-purpose proces-
sors, specialised Digital Signal Processors (DSP), or exotic
devices like Field Programmable Gate Arrays (FPGAs). This
five-volume specification provides both Domain-Specific
Languages (defined as UML profiles) for designing Soft-
ware Radios, and PIMs standardising parts of software ra-
dio designs. Mappings of these PIMs onto the PSMs for the
industry-standard CORBA-based Software Communication
Architecture (SCA) are also provided [7].

Application Management and System Monitoring for
Combat Management Systems. This specification addresses
the problem of centralised management of CMS applica-
tions running on the wide variety of hardware and software
platforms found on modern warships. It includes a PIM and
PSMs for several widely-used platforms including CORBA,
DMTF CIM Managed Object Format and Data Distribu-
tion Service (DDS™) middleware, as well as defining a PSM
for exchange of management data using XML [8].

OMG’s web site has a full list of specifications devel-
oped using MDA [9].

6 MDA and Software Development
One important difference between creating

interoperability specifications and designing software is that
the latter almost always involves modifying and interfac-
ing with existing application code. Although this is often
dismissively termed "legacy integration", as though it in-
volved working with a few quaint leftovers from a former
age, studies over the last 20 years have repeatedly shown
that IT users spend far more effort on modifying existing
software than on deploying "new" applications [10] [11]
[12]. The original cost of acquiring an application (whether
purchased or developed in-house) is often only 10-20% of
its Total Cost of Ownership (TCO) when software lifetimes
are measured in decades.

If using MDA for software development is going to help
achieve a meaningful reduction in TCO, it clearly has to
address the issue of maintaining and updating existing soft-
ware, since this can account for up to 90% of software’s
true cost.

One way that MDA reduces TCO is by creating new
application code with fewer bugs. Higher-quality code re-
sults in less effort later being spent on problem diagnosis
and remedies, making it easier to adapt the code to new
business needs, and lowering the costs to train and support
users of the system. An informal side-by-side study in 2006
comparing MDA with traditional hand-coding for a new
commercial billing application showed that MDA techniques
produced almost three times as many lines of code per dol-
lar spent, but with less than one third the defect rate discov-
ered during testing (1.1 defects per thousand lines of code

10 UPGRADE Vol. IX, No. 2, April 2008 © Novática

Model-Driven Software Development

for MDA, 4.1 for traditional coding) [13]. Although the low-
ered coding costs are impressive, the higher code quality
will have a much greater impact on the system’s TCO over
its life.

Having models as a product of the development process
also helps lower the costs of making subsequent modifica-
tions to the system. Maintainers working on existing appli-
cations typically spend more than half of their time simply
trying to understand how the code works before they can
begin to modify it [14]. With MDA, the design models are
one of the products of application development, along with
the code itself, so maintenance involves modifying the
models and regenerating the corresponding parts of the code.
The savings in time spent understanding and then modify-
ing the code can be substantial. In early 2003 a side-by-side
laboratory study of maintenance of MDA-based and non-
MDA-based J2EE applications found that MDA increased
maintainers’ productivity by 37% compared to traditional
code-based maintenance [15].

MDA’s architects have also recognised that not all ap-
plications will have been developed this way, so there will
be times when a team equipped with MDA tools and skills
is faced with modifying an application for which no MDA
model exists. It is therefore essential that there’s some way
of recovering design information from existing software,
even where original designs have been lost (or even never
existed in the first place). Acknowledging this, OMG started
work on "Architecture Driven Modernisation" (ADM)
standards in 2003, two years after the MDA initiative be-
gan.

The first product of the ADM effort is the Knowledge
Discovery Metamodel (KDM) specification, which provides
standard metamodels for documenting and formally repre-
senting existing software assets and their operational envi-
ronments with MOF. KDM defines a common vocabulary
of knowledge related to software engineering artefacts, re-
gardless of the implementation programming language and
runtime platform (a checklist of items that a software min-
ing tool should discover and a software analysis tool can
use. KDM’s common MOF models and interchange format
provide an integration layer between the syntax-specific
parsers used to extract information from raw source code
and the analysis and transformation tools which process
abstract program structure information, thus allowing ex-
port and import of data currently contained within individual
software modernisation tools). In this way KDM can pro-
vide both a common platform to help integrate diverse soft-
ware modernisation tools, and also provide the basis for
bringing knowledge about existing software assets into the
MDA software creation process [16].

Independently of MDA, the KDM specification is also
finding application in the Software Assurance field, to help
analyse existing software to detect security vulnerabilities
and other ways in which it might behave outside its required
specification. As with software modernisation, many tools
are likely to be involved, each producing a portion of the
required knowledge about the software assets. KDM is also

being used in the Software Assurance field as a standard
way of representing knowledge about software collected
via a variety of different tools.

Creating tools for recovering design knowledge from
existing software is a challenging problem, and OMG’s work
on standards in this area will continue for some time; for
instance, a forthcoming specification will standardise a
metamodel for Abstract Syntax Trees, to facilitate the analy-
sis, visualization and refactoring of application code below
the procedural level supported by KDM. However, the work
in this area is already yielding benefits in helping modify
and update existing application code, rather than merely
encapsulating it unchanged, and have new applications com-
municate with it at arms’ length, as too often happens to-
day.

7 The Future
As business users become increasingly dependent on

Information Technology to deliver products and services,
so problems caused by the inflexibility of IT systems be-
comes ever more pressing. Rather than adapting to the
changing needs of the businesses they supposedly serve, IT
systems’ capabilities increasingly dictate business policy.
Traditional software engineering techniques demand sta-
ble, well-defined requirements and long timescales for cre-
ating systems tailored to users’ needs, yet the business en-
vironment is changing with increasing speed. All the while,
an ever-growing deployed software base is accumulating
post-design modifications that distort its structure to the
point of "software death", where any further modification
(whether to fix a bug or introduce a new feature) in turn
introduces a new bug.

The convergence of MDA with Business Process Man-
agement (BPM) and Service Oriented Architecture (SOA)
offers a road-map for organisations seeking to escape the
straightjacket of software inflexibility.

BPM is an umbrella term for the techniques of identify-
ing, documenting and managing the complete end-to-end
processes an organisation uses to perform an individual task,
especially where this involves the cooperation of multiple
individuals, departments or separate organisations. The doz-
ens or hundreds of processes within an organisation typi-
cally have both human and IT components, and many of
the individual activities within any one process are also used
in conjunction with other activities in other processes. Just
as different organisations have different levels of maturity
in their software production processes, so business organi-
sations have different levels of business process maturity.
OMG’s Business Process Maturity Model (BPMM) [17]
helps organisations discover and improve the level of pre-
cision with which they understand their own processes.
Given well-understood processes, precise yet easily-learned
visual notations like SBVR and BPMN can be used to docu-
ment and communicate them between business stakeholders,
process participants and the engineers building software to
support them.

Service-Oriented Architecture is one of the foundations

UPGRADE Vol. IX, No. 2, April 2008 11© Novática

Model-Driven Software Development

on which OMG’s technical architecture was built almost 20
years ago, but it has now gained new prominence as a
method of designing, deploying and managing the individual
activities that make up a business process. At the software
level, use of SOA entails building components with well-
defined meta-data that defines both the information they
require from each other and the services that they provide,
allowing tools to orchestrate the late binding of SOA serv-
ices into new processes as the needs of the organisation
change. MDA provides the vital bridge between BPM de-
sign and SOA infrastructure, allowing process models cap-
tured via MOF-based languages like SBVR, BPMN or UML
activity diagrams to be translated into that orchestration
code.

The convergence of model-driven software develop-
ment, service orientation and better techniques for docu-
menting and improving business processes holds out the
promise of rapid, accurate development of software that
serves, rather than dictates, software users’ goals.

8 Conclusion
Put in a historical context, MDA can be seen as the most

recent step in the progressive development of better and
more powerful tools for writing software over the 60 year
history of electronic data processing. The first programmers
write their applications directly in machine code, entering
the bit patterns for instructions from memory and calculat-
ing branch offsets and index register settings by hand. As-
semblers moved programmers one level of abstraction away
from the raw machine, then 3rd Generation Languages
(3GLs) and 4th Generation Languages (4GLs) each added
another level of tooling between the user and the raw ma-
chine, providing abstractions that are progressively closer
to the concepts used by the ultimate user of the IT system.
MDA continues this trend to better tools and increasing
abstraction. There has always been a fierce rearguard ac-
tion (clinging to the efficiency argument) to any increase in
the level of abstraction, but the flexibility, reduced com-
plexity and increased productivity of the abstractions have
always won through in the end [18]. MDA is proving to be
no exception.

References
[1] Gartner Group. "Middleware: what end users are buy-

ing and why", February 1999.
[2] Sun Microsystems. "Java Transaction Service 1.0

Specification", <http://java.sun.com/products/jts/>,
1999.

[3] OMG. "Object Transaction Service 1.2.1", <http://
doc.omg.org/formal/01-11-03>, 2001.

[4] A. Zeichick. " UML Adoption Making Strong
Progress", SD Times, 15th August 2004.

[5] OMG. " Gene Expression Specification 1.1", <http://
doc.omg.org/formal/03-10-01>, October 2003.

[6] OMG. "Product Lifecycle Management Services 1.0.1",
<http://doc.omg.org/formal/06-04-03>, April 2006.

[7] OMG. "PIM and PSM for Software Radio Components

Specification 1.0", <http://doc.omg.org/formal/07-03-
01>, March 2007.

[8] OMG. "Application Management and System Moni-
toring for CMS Systems Beta 2 specification", <http:/
/doc.omg.org/dtc/07-05-02>, May 2007.

[9] OMG. Specification Catalogue, <http://www.omg.org/
technology/documents/spec_catalog.htm>.

[10] L. Erlikh. "Leveraging Legacy System dollars for E-
business", IEEE IT Pro, May/June 2000.

[11] A. Eastwood. "Firm Fires Shots at Legacy Systems",
The Standish Group, 1993.

[12] J. Moad. "Maintaining the competitive edge",
Datamation 61-62, 64, 66., 1990.

[13] Steve Hudson. Private communication, 2006.
[14] B.P. Lientz, E. Swanson. "Problems in application soft-

ware maintenance", Communications of the ACM 24
(11), 763-769, 1981.

[15] The Middleware Company. "Model Driven Develop-
ment for J2EE Utilizing a Model Driven Architecture
(MDA) Approach - Maintainability Analysis", Janu-
ary 2004.

[16] OMG. " Architecture-Driven Modernization: Knowl-
edge Discovery Meta-Model 1.0 beta3", <http://
doc.omg.org/ptc/2007-03-15>, March 2007.

[17] OMG. "Business Process Maturity Model 1.0 beta1",
<http://doc.omg.org/dtc/2007-07-02>, July 2007.

[18] D. Otway. "Abstract & Automate", Architecture
Projects Management Ltd, <http://www.ansa.co.uk/
ANSATech/94/Primary/102001.pdf>, May 1994.

12 UPGRADE Vol. IX, No. 2, April 2008 © Novática

Model-Driven Software Development

Keywords: Model-Driven Architecture (MDA), Model-
Driven Development (MDD), Object Management Group
(OMG).

1 Introduction
Almost four years ago, some of my colleagues at IBM

Rational and I co-authored an article entitled "An MDA
Manifesto", which was first published in the MDA Journal
and then again in the eponymous book by Frankel and Parodi
[1]. The primary intent was to articulate our shared vision
of model-driven development (MDD). IBM and its Rational
business unit in particular were pioneers in the application
of modeling methods to software development.

Jim Rumbaugh and Grady Booch, both of Rational (and
both of whom were authors of the Manifesto article), were
the primary designers of the Unified Modeling Language
(UML), much of it based on their industry-leading earlier
work in model-based object-oriented methodologies. Ra-
tional’s modeling tools were and still are market leading
MDD tools.

It is both interesting and instructive to reflect on that
vision in the light of subsequent practical experience with
MDD since the article was written. Has anything funda-
mental changed in the vision? What are the current states of
practice and adoption of MDD? What stands in the way
and how serious is it? The purpose of this article is to ex-
amine some of these issues and also to investigate potential
strategies that would enable broader application of MDD in
industry and a more comprehensive realization of the vi-
sion behind it.

It would have been ideal if all of the original authors
were involved in this assessment, but, due to a number of
operational reasons this was not feasible (for one, I have
since retired and have a bit more time at my disposal than
my co-authors). Nevertheless, I have maintained close con-
tact with all of them and, although I certainly cannot claim
to represent their views, I am confident that we share pretty
much the same vision and objectives outlined in the origi-
nal article.

2 The MDA Manifesto Revisited
A "manifesto" is an explicit declaration of set of princi-

MDA Manifestations

Bran Selic

In 2004 the author, along with several colleagues, published an article titled "An MDA Manifesto", which outlined a
strategic vision for Model-Driven Development (MDD). That article identified the key elements that characterized this
approach to software development and its value proposition. The present article contains an assessment of the progress
made since then towards fulfilling that vision, based on practical experience in applying MDD in industry. The key
impediments that are hindering a more extensive realization of that vision are identified and categorized. Finally, a long-
term strategy is outlined for overcoming these hurdles.

Author

Bran Selic is currently President of Malina Software Corp. In
2007, Bran retired from IBM Canada, where he was an IBM
Distinguished Engineer responsible for defining the strategic
direction for software modeling tools for the Rational brand.
He is currently the chair of the OMG task force responsible for
the UML standard. Bran is also an adjunct professor of computer
science at Carleton University in Ottawa, Canada.
<bselic@ca.ibm.com>.

ples and a plan of action for reaching some objectives. The
original article identified three keystones of the Model
Driven Architecture (MDA) initiative from the Object Man-
agement Group (OMG) [2], as interpreted by IBM’s tech-
nical team responsible for its MDD strategy. These were:

Use of higher levels of abstraction in specifying both
the problem to be solved and the corresponding solution,
relative to traditional software development methods (NB:
in the original article, this was referred to as "direct repre-
sentation").

Increased reliance on computer-based automation to
support analysis, design, and implementation.

Use of industry standards as a means facilitating
communications, product interworking, and technological
specialization.

The following is a brief summary of the nature and ra-
tionale of each of these key elements. Readers interested in
a more in-depth description should refer to the Manifesto
article itself.

2.1 The Issue
In essence, the primary problem that MDD is intended

to address is the often overwhelming complexity involved
in designing and implementing modern software. The mag-
nitude of this problem just keeps growing, as our demands
for more sophisticated functionality and more dependable
software increase (as Grady Booch notes, in some ways
"software runs the world" [3]). It is, therefore, critical for
us to understand the sources of this complexity lies and what
can be done about them.

UPGRADE Vol. IX, No. 2, April 2008 13© Novática

Model-Driven Software Development

In his seminal work on software development, "The
Mythical Man-Month" [4], Fred Brooks Jr. identifies two
kinds of complexity: essential complexity, which is inher-
ent to a particular problem and, consequently, unavoidable,
and arbitrary complexity, which is due to the methods and
tools used to address the problem. Brooks points out that
software designers face more than their share of arbitrary
complexity.

For example, they often have to cope with the idiosyn-
crasies of traditional programming languages, in which a
single uninitialized variable or misaligned pointer can have
disastrous consequences, whose impact can extend far be-
yond the localized context in which the error was made.
Similarly, many crucial and difficult to detect errors can be
introduced in the process of translating complex domain-
specific concepts into corresponding computer-program
implementations.

The basic motivation behind MDD can be reduced to
the elimination of arbitrary complexity, through the defini-
tion of improved methods and tools.

2.2 Abstraction
Abstraction is a primary technique by which human

minds cope with complexity. By hiding from view what is
irrelevant or of little consequence, a complex system or situ-
ation can be reduced to something that is comprehensible
and manageable. When it comes to software, it is extremely
useful to abstract away technological implementation de-
tail and deal with the domain concepts in the most direct
way possible. For instance, it is typically easier to view and
comprehend a state machine as a graph, rather than to see it
in the form of nested "case" statements in some program-
ming language rife with distracting low-level syntactical
details.

The MDD approach to increasing levels of abstraction
is to define domain-specific modeling languages whose
concepts closely reflect the concepts of the problem do-
main whilst minimizing or obscuring aspects that relate to
the underlying implementation technologies.

To facilitate communications and understanding, such
languages use corresponding domain-specific syntactical
forms. This often means using non-textual representations
such as graphics and tables, which more readily convey the
essence of domain concepts than text.

2.3 Automation
Automation is the most effective method for boosting

productivity and quality. Software, of course, is an excel-
lent medium for exploiting automation, since the computer
is in many ways the ideal machine for constructing com-
plex machines. In case of MDD, the idea is to utilize com-

puters to automate any repetitive tasks that can be mecha-
nized, tasks which humans do not perform particularly ef-
fectively. This includes, but is not limited to, the ability to
transform models expressed high-level domain-specific
concepts into equivalent computer programs, as well as into
different models suitable for design analyses (e.g., perform-
ance analyses, timing analyses). In case of executable
modeling languages computer-based automation can also
be used to simulate high-level models to help evaluate the
suitability of a proposed design in all stages of develop-
ment.

2.4 Standards
MDA is OMG’s initiative to support MDD with a set of

open industry standards. Such standards provide multiple
benefits, including the ability to exchange specifications
between complementary tools as well as between equiva-
lent tools from different vendors (thereby avoiding vendor
lock-in). Standards allow tool builders to focus on their prin-
ciple area of expertise, without having to recreate and com-
pete capabilities provided by other vendors. Thus, a per-
formance analysis tools need not include a model editing
capability. Instead, it can interact with a model editing tool
using a shared standard .

As part of MDA, the OMG has defined a basic set of
MDD standards for modeling languages (e.g., UML, MOF),
model transform definition (MOF QVT), MDD process
definition (SPEM), and a number of other areas. It is some-
what ironic that MDA is sometimes viewed as an approach
to MDD that is contrary to the domain-specific languages
approach, this is not the case, since many of the MDA stand-
ards are specifically designed to support specialization for
domain-specific needs. The MOF language, for instance, is
a language for defining domain-specific languages. Further-
more, UML can also be used to define different domain-
specific languages by taking advantage of its profile mecha-
nism. This not only allows reuse of the effort and ideas that
went into the design of UML but also enables the reuse of
existing UML tools. In many ways, this approach to do-
main-specific language design overcomes one of the major
barriers that has impeded such custom approaches in the
past: the lack of adequate tooling as well as the cost of main-
taining it and evolving it. Thus, it is possible to reap the
benefits of both standardization and customization.

3 The State of the Practice in MDA
While one can argue against concrete realizations of the

MDA idea, such as the technical features of UML or MOF,
it is hard to argue with any of its basic premises. Increasing
the levels of abstraction and automation and the use of stand-
ards, executed properly, are all undeniably useful. Further-
more, there have been numerous examples of successful
applications of MDA in large-scale industrial projects (cf.
[5] [6])1 . Yet, there is still a significant amount of contro-
versy about whether or not MDA is useful. It is fair to say
that the dominant perception among today’s software prac-
titioners is that MDA has yet to prove itself, or, at the ex-

1 On the other hand, many enterprises that have achieved suc-
cesses with MDD are inclined to keep them confidential in the be-
lief that their use of MDD is an important advantage they hold over
competitors.

14 UPGRADE Vol. IX, No. 2, April 2008 © Novática

Model-Driven Software Development

treme end of the opinions scale, that it is a distracting aca-
demic fairy tale, concocted by software theologians who
are disconnected from any practical reality2 .

I am unaware of any published results, but my personal
estimate from numerous discussions with software devel-
opment teams in industry is that the penetration of model-
based methods hovers around 10%. If this stuff is really as
good as claimed, why isn’t everyone using it?

It turns out that there are numerous and varied reasons
for this glacial pace of adoption. They can be roughly clas-
sified into technical, economic, and cultural.

3.1 Technical Hurdles
A major problem that plagues many software products

these days is usability. In the case of MDA, it is mostly
manifested in MDA tools. Although often endowed with
diverse and very powerful functionality, such tools almost
invariably tend to be extremely difficult to learn and to use.
Users are typically faced with a bewildering spectrum of
menu items arranged in seemingly arbitrary groupings.
Common operations that should be easy to use often re-
quire complex and counterintuitive tool manipulations. One
of the reasons for this is that, ironically, many of the tool
designers and implementers are not themselves practition-
ers of MDD and, therefore, do not have a sense for how the
tools should look and behave.

Consequently, poor tool usability is one of the biggest
current impediments to greater penetration of MDD meth-
ods in practice.

A second major technical problem is that there is still
very little theoretical underpinning for MDD. Much of the
MDD technology that is available today was developed in
ad hoc ways by industrial teams who were trying to solve
specific problems in circumstances that do not afford the
luxuries of reflection and generalization. As a result, when
it comes to supporting MDD, we do not yet know precisely
what works, what does not, and why. The result is not only
gratuitous diversity but also substandard and inadequate
technologies. In contrast, traditional programming-oriented
methods and technologies have been studied amply and one
can rely on a sound body of theory to ensure that common
problems are avoided and solid and proven solutions are
chosen.

The lack of a sound theory of MDD is also manifested
in interoperability problems between MDD tools that often
result in highly undesirable vendor lock-in for users. This
is true even in the presence of standards.

3.2 Cultural Hurdles
Despite the availability of hard evidence of the success

of MDA in practice, there is still insufficient awareness of
its potential and its capabilities among practitioners who
could be exploiting it. However, even in cases where a
project team might be fully aware of the potential benefits
of applying MDD, there is still a problem in adopting it due
to the inevitable overheads whenever new methods and tools
are introduced into a running production environment. It
takes time to learn and adjust to new ways of working (not
to mention that it may be necessary to support the old and
the new methods and tools during phased cutovers). In to-
day’s highly competitive environment, where time-to-mar-
ket is a fundamental driver of development, this overhead
is difficult to accept, since the investment payback is gener-
ally deferred to subsequent projects.

However, perhaps the most difficult issue to overcome
of all is the conservative mindset of many software practi-
tioners. Because they tend to invest vast amounts of time
and effort in mastering specific implementation technolo-
gies (which, due to their often arbitrary complexity, do re-
quire significant investment), many practitioners define their
expertise in terms of computing technologies they have
mastered rather than the domain in which they are working.
For instance, they are much more likely to view themselves
as, say, J2EE experts rather than as financial software ex-
perts. Consequently, there is often major resistance to tech-
nological change, even if the new technology could lead to
better solutions for the specific domain problem on which
they are working. This same technology-centered culture
means that many software developers have a very superfi-
cial interest in and understanding of how the products they
implement are to be used, which, in turn, leads to poor prod-
uct usability discussed above.

One major barrier in overcoming all such cultural is-
sues is the sheer number of software practitioners, which is
estimated between 10 and 15 million [7]. This is, of course,
a huge inertial mass that is very difficult to shift from its
present cultural base.

3.3 Economic Hurdles
Today’s prevailing business environment is focused on

relatively short-term return on investment (ROI). Public
companies report their results on a quarterly basis and a
failure to meet profit expectations in a given quarter is likely
to result in a falling stock prices and a shift of stockholders
to other apparently more immediately profitable businesses.
This has the unfortunate effect that most investment in tech-
nological development tends to be short-term. Consequently,
it is hard to justify longer-term investments in new soft-
ware development methods and tools, particularly if the
payback is not guaranteed. And, to be fair, switching to MDD
does not guarantee success, partly because of the other is-
sues discussed above. For example, the risks of introducing
MDD into a software development organization can be
greatly mitigated if it is led by individuals with prior expe-
rience. Unfortunately, such expertise is still quite difficult
to find and secure. And, with the aforementioned absence
of a systematic foundation for MDD, organizations are of-

2 Steve Mellor tells the following anecdote that epitomizes the cur-
rent state of affairs in MDA: When he was asked over ten years
ago about when he expected MDA to become mainstream, he sug-
gested that it would likely happen within the following year and a
half to two. And he has been giving the same answer to that ques-
tion ever since.

UPGRADE Vol. IX, No. 2, April 2008 15© Novática

Model-Driven Software Development

ten left to fend for themselves through a risky process of
trial and error.

Clearly, these are all substantial barriers to overcome
and it seems likely that the pace of introduction of MDD in
industrial practice will remain a slow for several years to
come. In the next section, we describe some initiatives that
could help accelerate this trend.

4 The Way Forward
There are at least three possible areas in which to ad-

dress the problem of increasing the penetration of MDD in
practice:

Education
Research
Standardization

4.1 Education
Given the difficulties of changing the dominant tech-

nology-centric culture noted above, it is necessary to initi-
ate such change through education, starting at the under-
graduate level. This means instilling an understanding and
respect for users among software engineering students. A
primary need is comprehending the value that the product
to be developed has for its customers and users. That, in
turn, typically requires an understanding of the economic
and business context of the product. In other words, what is
needed is insight that extends beyond the immediate tech-
nological issues. Software engineering graduates must have
an understanding and working knowledge of economic and
business factors that influence what they design and build3 .
As Charles Babbage put it: "It is doubly important for the
man of science to mix with the world".

In addition, designing software products that are used
by people requires an understanding of human psychology.
At present, the prevailing attitude among software devel-
opers seems to be that human factors constitute a second-
order concern, to be addressed by user-interface design spe-
cialists once the main system architecture has been final-
ized. Often this is viewed as a mere matter of designing
suitable graphical interfaces and menu items. The under-
standing that usability requirements might have a funda-
mental impact on the architecture of a software system is
still rare among software professionals.

Last but not least, it is necessary to increase the intro-
duction of MDD methods into software engineering educa-
tion. Most current undergraduate curricula already include
some basic elements of model-based engineering, such as
courses on UML. But, with no systematic theoretical foun-
dation on which to base this, the results are often haphazard
and inadequate. To address that, more research is needed
into the theory behind MDD.

4.2 Research
The research community has embraced the notion of

MDD, partly because they see it is an opportunity to effect
a dramatic sea change in software technology. For exam-
ple, modeling languages can be designed to avoid the arbi-
trary complexity of current programming languages. This
complexity is sometimes a barrier to the application of
highly-effective engineering methods, such as the use of
mathematical analyses to predict key system characteris-
tics before the system is constructed. All too often in soft-
ware, such characteristics remain unknown until the com-
plete system is designed and built, at which point the cost
of redesign can be prohibitive. New modeling languages
can be designed that are specifically designed to support
such analyses.

Yet, despite the eagerness with which researchers have
accepted MDD, there are some issues with the current re-
search efforts. One of them is that much of the research
focuses on particular point problems, in large part because
research funding is provided by industrial partners who are
primarily interested in solving their immediate problems.
Consequently, there is insufficient exploration of the theo-
retical foundations of MDD. What is needed, therefore, is
an overall map of the MDD research space in which the
various areas of exploration are clearly identified as are the
relationships between them. Only when this is properly
understood will we be able to talk of a comprehensive and
systematic theory of MDD.

One recent initiative is intended to deal with this issue:
the newly formed Centre of Excellence for Research in
Adaptive Systems (CERAS) [8]. This is a multi-year re-
search effort organized and funded by the Ontario Centres
of Excellence (specifically, its Centre for Communications
and Information Technology) and the IBM Center for Ad-
vanced Studies, with the objective of exploring the
foundational issues behind a number of related emerging
computing technologies, including MDD. One of its pri-
mary objectives in the domain of MDD is to define a com-
prehensive framework for MDD research (the research map
mentioned above). Another key objective is to provide a
communal focal point and a kind of clearinghouse for MDD
research worldwide. In addition to exploring the founda-
tions of MDD, CERAS will be doing research in the fol-
lowing areas (and, likely, others):

Modeling language semantics and design (includ-
ing domain-specific languages).
Model transformations (including model-to-model
and model-to-code).
Model analysis (safety and liveness property check-
ing).
Model-based verification.
Model management.
MDD methods and processes.
MDD tooling.

4.3 Standards
The role of standards, de facto or de iure, is key to the

3 One additional benefit of a broader education is an understand-
ing when technological solutions are appropriate and when they
are not. There are many examples when technological solutions
have created more problems than they solved.

16 UPGRADE Vol. IX, No. 2, April 2008 © Novática

Model-Driven Software Development

success of any widely used technology. Standardization will
not only allow the distilling of proven results in a vendor-
neutral manner, it will also facilitate specialization by pro-
viding a common foundation for interworking between
specialties. Standardization bodies, such as the OMG are
not only useful, but necessary. However, given the highly
competitive nature of the industry and the unprecedented
flexibility of software, it is difficult to expect software ven-
dors to voluntarily conform to standards. Therefore, users
of MDD tooling and software professionals in general
should do their utmost to pressure vendors to contribute
and adhere to software standards

Clearly, there should be a close link between research,
industry, and standards bodies. It is critical that only things
that are both well understood and proven in practice be
standardized. Premature standardization can be counterpro-
ductive.

5 Summary and Conclusions
MDD has the potential to provide significant improve-

ments in the development of software. It is based on sound
and time-proven proven principles: higher levels of abstrac-
tion, higher levels of automation, and standardization. Fur-
thermore, there are numerous verifiable examples of suc-
cessful applications of MDD in industrial practice, that are
existence proofs of its viability and value. Yet, the use of
MDD is still an exception rather than the norm. This is due
to the not insignificant hurdles that need to be overcome.
Although many of these are technical in nature, what may
be surprising to some is that the most difficult hurdles to
overcome are the ones stemming from the current idiosyn-
cratic culture of software development. This culture places
far too much emphasis on technology and not enough on
technology users and their needs. It is a very pervasive cul-
ture that is sustained in part by the current business climate
that is heavily focused on short-term gain and, thus, dis-
courages investment in new methods and tools.

In such circumstances the best that can be expected is a
gradual introduction of MDD, facilitated primarily through
changes in educational curricula and investment in
foundational research. Software engineers must be much
better educated in human factors and the workings of the
marketplace; they should view technology more as a tool
rather than as an end unto itself. At the same time, we need
to research and develop a systematic theory of MDD, to
ensure that the corresponding technology and methods are
well understood, useful, and dependable.

References
[1] G.. Booch et al. "An MDA Manifesto", en Frankel, D.

and Parodi, J. (eds.) The MDA Journal: Model Driven
Architecture Straight from the Masters. Meghan-Kiffer
Press, Tampa, Florida, 2004 (pp. 133-143).

[2] OMG. MDA Guide (version 1.0.1), OMG document
number omg/03-06-01, <http://www.omg.org/docs/
omg/03-06-01.pdf>, 2003.

[3] G. Booch. Saving Myself. <http://booch.com/architec-

ture/blog.jsp?archive=2004-00.html>, July 22, 2004.
[4] F. Brooks. The Mythical Man – Essays on Software

Engineering (Anniversary edition). Addison-Wesley,
1995. ISBN: 0201835959.

[5] OMG. MDA Success Stories (web page). <http://
www.omg.org/mda/products_success.htm>.

[6] N.J. Nunes et al. Industry Track papers in UML
Modeling Languages, and Applications – 2004 Satel-
lite Activities (Revised Selected Papers), Lisbon, Por-
tugal, October 2004, Lecture Notes in Computer Sci-
ence, vol. 3297, Springer-Verlag, 2005 (pp. 94-233).
ISBN: 3540250816.

[7] IDC. The 2007 Worldwide Professional Developer
Model. IDC document number #207143. <http://
www.idc.com/getdoc.jsp?containerId=207143>, 2007.

[8] Ontario Centres of Excellence (OCE). Centre of Ex-
cellence for Research in Adaptive Systems (CERAS).
<https://www.cs.uwaterloo.ca/twiki/view/CERAS/
CerasOverview>.

UPGRADE Vol. IX, No. 2, April 2008 17© Novática

Model-Driven Software Development

Keywords: Domain-Specific Languages (DSL), Do-
main-Specific Tools (DST), Model-Driven Architecture
(MDA), Model-Driven Development (MDD).

1 Introduction
The development of information systems is getting in-

creasingly complex as they become more and more distrib-
uted and pervasive. Today’s advanced software developer
must be familiar with a wide range of technologies for de-
scribing software, including modern object-oriented pro-
gramming languages, eXtensible Markup Language (XML)
and its accessories (schemas, queries, transformations),
scripting languages, interface definition languages, proc-
ess description languages, database definition and query
languages, and more. Translating from the requirements of
a business problem to a solution using these technologies
requires a deep understanding of the many architectures and
protocols that comprise a distributed solution. Furthermore,
end-users expect the result to be fast, available, scaleable
and secure even in the face of unpredictable demand and
unreliable network connections. It can be a daunting task.

In areas other than software development, such as elec-
tronic consumer products (TVs and HiFis), cameras, cars
and so on, we have come to expect a high degree of reli-
ability at low cost, coupled increasingly in many cases with
the ability to have items customized to satisfy individual
needs. These expectations are met because of advances in
industrial manufacturing processes made over many dec-
ades. Building a car or a television involves the coordina-
tion of a complex chain of manufacturing steps, many of
which are wholly or partially automated.

We would like to apply similar principles to the con-
struction of software. The main difficulty in doing so is that
we have not yet developed techniques for software descrip-
tion that allow different concerns within the software de-
velopment process to be effectively separated and effec-
tively integrated. Although we increasingly use different
languages for different tasks (programming languages for
writing application logic, XML for transmission of data
between application components, Structured Query Lan-

The Domain-Specific IDE

Steve Cook and Stuart Kent

Years of pursuing efficiencies in software development through model-driven development techniques have led to the
recognition that domain-specific languages can be an effective weapon in the developer’s armoury. But these techniques
by themselves are necessarily limited; only by assimilating them into the overall context of a domain-specific development
process and tools can their real power be harnessed.

Authors

Steve Cook works at Microsoft, and is the software architect of
the Domain-Specific Language Tools which are part of Microsoft
Visual Studio. He is currently working on future versions of
these tools. Previously he was a Distinguished Engineer at IBM,
which he represented in the UML 2.0 specification process at
the OMG. He has worked in the IT industry for more than 30
years, as architect, programmer, author, consultant and teacher.
He is a member of the Editorial Board of the Software and Systems
Modeling Journal, a Fellow of the British Computer Society, and
holds an Honorary Doctor of Science degree from De Montford
University (United Kingdom). <steve.cook@microsoft.com>.

Stuart Kent is a Senior Program Manager on the Visual Studio
team in Microsoft. Stuart joined Microsoft in 2003 to work on
tools and technologies for visual modelling. This culminated in
the Domain-Specific Language Tools, which are now part of
the Visual Studio core tooling platform and are described in a
recent book (Domain-Specific Development with Visual Studio
DSL Tools) that he co-authored. Before joining Microsoft, Stuart
was an academic and consultant, with a reputation in modelling
and model driven development. He has over 50 publications to
his name and made significant contributions to the UML 2.0
and MOF 2.0 specifications. He is a member of the editorial
board of the Software and Systems Modeling journal, and on
the steering committee for the MoDELS series of conferences.
He has a PhD in Computing from Imperial College, London.
<stukent@microsoft.com>.

guage (SQL) for storing and retrieving data in databases,
Web Services Description Language (WSDL) for describ-
ing the interfaces to web-facing components) there are many
complexities involved in getting these languages to work
effectively together.

2 Domain Specific Modelling Languages

2.1 Model Driven Development (MDD)
Model driven development is an approach to software

development where the main focus of attention shifts from
writing code by hand to dealing with higher level abstrac-

18 UPGRADE Vol. IX, No. 2, April 2008 © Novática

Model-Driven Software Development

tions (models). The approach aims to increase productivity,
improve reliability and be more predictable.

Typically, a model driven development solution devel-
ops incrementally in stages, as follows.

In the first stage, a solution starts out as a way of getting
an initial boost in productivity by generating code that is
duplicated within and between software applications, in-
stead of writing it by hand. In this situation, the model pro-
vides the information that is variable in amongst the dupli-
cated code, and the code generators merge this with boiler-
plate code to produce the final result. As it is unlikely that
all the required code can be generated from the model, the
architecture of the software application may need to be ad-
justed to ensure that the generated code is kept separate
from any hand written code.

In the next stage, as the code generators become more
complex, it is realized that much of the duplication can be
removed by creating a framework using constructs, where
available, in the underlying programming language. This
generally won’t remove all the duplication, but it will re-
move bloat from the code generators and make them easier
to maintain.

In a third stage, it may be possible to remove the need
for code generation altogether, and write the framework so
that it directly interprets the model.

In subsequent stages, once models have become a first
class citizen in the software development process, they can
then be treated as the target of transformations from yet
more abstract models.

However, there is a lot to consider, even in the first stage,
including:

What language should the model be expressed in?
What’s the best way to write the code generators?
How do we expose the code generators to the users
of the tools, for example when a ship-blocking bug
needs to be fixed?
How do we ensure that generated code can be mixed
with non-generated code so that regeneration does
not overwrite the non-generated code?
How do we ensure that generated code builds and
exhibits the correct behaviour?
How is the generated code tested?
How does a developer debug through the generated
code? Should he need to?

There aren’t easy answers for all these questions. In-
deed, in the next section we argue that questions such as
these require us to think in terms of making the whole tool-
ing environment domain specific, with models and code
generators being only a part of a more holistic, integrated
environment. Nevertheless, when models are an important
part of the overall solution, the most burning question is the
first: what language is used to express the models? That’s
the focus of the remainder of this section, and, when con-

sidering an answer, it’s worth noting that answers to the
other questions involve writing tools, including code gen-
erators, which must be able to access the models program-
matically. The range of situations in which model driven
development provides a productive approach depends di-
rectly on how easy it is to build and test those tools.

2.2 UML
A language often associated with MDD is the Unified

Modeling Language (UML), which is a standard of the
Object Management Group (OMG)1 .The development of
the UML started during the early 1990s, when it emerged
as a unification of the diagramming approaches for object-
oriented systems developed by Grady Booch, James
Rumbaugh and Ivar Jacobson. First standardized in 1997,
it has been through a number of revisions, most recently
the development of version 2.

UML is large and complicated, version 2 especially so.
To understand UML in any depth it is important to under-
stand how it is used. We follow the lead of Martin Fowler,
author of "UML Distilled," one of the most popular intro-
ductory books on UML. Martin divides the use into
UMLAsSketch, UMLAsBlueprint, and UMLAs
ProgrammingLanguage (for more details see <http://
martinfowler.com/bliki>).

UMLAsSketch is very popular. Sketches using UML can
be found on vast numbers of whiteboards in software de-
velopment projects. To use anything other than UMLAs
Sketch as a means of creating informal documentation for
the structure of an object-oriented design would today be
seen as perverse. In this sense, UML has been extremely
successful, and entirely fulfilled the aspirations of its crea-
tors who wanted to eliminate the gratuitous differences be-
tween different ways of diagrammatically depicting an ob-
ject-oriented design.

UMLAsProgrammingLanguage is an initiative sup-
ported by a rather small community, which is unlikely to
gain much headway commercially, and which we will not
dwell upon.

UMLAsBlueprint characterizes the use of UML in MDD.
In this role, UML suffers from two problems:

Bloat. In most MDD solutions, it is likely that only a
small subset of the language will be applicable. So, although
tools implementing UML do generally provide rich program-
matic access to models created using them, the surface area
of the API against which tools - such as code generators -
are written is large, which just makes it that much harder to
code against. Also, unless the chosen graphical UML editor
allows significant parts of the language to be ‘switched off’,
the user of the MDD solution needs to have external guid-
ance on how to use the UML tool within the context of that
solution.

Not domain specific. In order to drive code genera-
tors in MDD, it’s necessary to develop models that fit the
domain, that can supply the exact information required by
the code generators to fill the gaps in the boilerplate and
produce fully executable code, and which conform to the

1 The OMG also uses the trademarked term Model Driven Archi-
tecture (MDA) for its particular take on MDD.

UPGRADE Vol. IX, No. 2, April 2008 19© Novática

Model-Driven Software Development

necessary validation rules that ensure the code generated is
well-formed and builds correctly. UML does support an
extension mechanism, called UML Profiles, which allows
additional data and validation rules to be added to a model.
But this cannot do anything about fundamental conceptual
mismatches between a domain and UML: at best, profiles
allow UML to be used for MDD where there is a reason-
able conceptual match between the domain and UML, and
all that is required is some additional data and validation
rules to make the models precise enough to drive code gen-
erators.

2.3 Domain-Specific Modelling Languages
An alternative to using the UML is to define a domain-

specific language specially designed for the MDD solution.
At first sight, this seems like a significant undertaking,

especially when you consider that in an MDD context the
language needs to be supported by an editor, often graphi-
cal, which validates models and delivers them in a machine-
readable form, as well as providing rich API access to those
models. Indeed, a reason that implementers of MDD solu-
tions may have opted for the sub-optimal UML-based ap-
proach is that it means they don’t have to build their own
graphical editor!

However, this is changing. There are now environments
available such as Microsoft’s Domain Specific Language
Tools (DSL Tools) [1], Eclipse Graphical Modeling Frame-
work (GMF) [2] and MetaCase’s MetaEdit+ [3] which sig-
nificantly reduce the cost of creating your own graphical,
domain specific modelling language and editor. These tools
generate a clean API for accessing models, and also include
support for writing code generators. The editors that are
created support graphical modelling using custom graphi-
cal notations, and allow rich model validation constraints
to be included.

One criticism aimed at using DSLs is that you can end
up creating a range of slightly different languages, one for
each MDD solution. This can be confusing to users, lead-
ing to a lot of very similar looking but subtly different lan-
guages and editors, and also confusing to tool builders who
might end up writing against similar but subtly different
APIs. In contrast, in the UML approach you have a base
language which can be shared between different solutions,
and then have an extensibility mechanism which allows the
base language to be customized for each MDD solution.
The problem with the UML approach is not the principle of
having a base language that is then extended and custom-
ized, but the fact that the UML has not been architected
well to support this. For this approach to be effective, the
UML should have been defined as a collection of small,
loosely coupled, unconstrained base languages capturing
specific modelling styles (class diagram style, component
style, state diagram style, sequence style etc.), where any
detailed content was defined through extensions (e.g. the

Java, .Net and Object-Oriented analysis class diagram ex-
tensions).

3. The Domain-Specific IDE
We’ve suggested that model-driven development can be

made more efficient by designing and implementing do-
main specific modelling languages aimed at specific soft-
ware development problems. But there’s much more to soft-
ware development than modelling, and we’d like to make
the entire software development process more efficient, not
just the modelling part of it.

Models form one aspect of the software development
experience. We must integrate this aspect with others across
the entire lifecycle: envisioning, architecture, design, cod-
ing, debugging, testing, deploying and managing. We are
increasingly discovering that this entire lifecycle is domain-
specific, and that implementing domain-specific software
development languages goes hand-in-hand with implement-
ing domain-specific processes.

Narrowing the domain means building more tools. These
are not simply modelling tools, or domain-specific exten-
sions to programming languages. The domain-specific
lifecycle also requires domain-specific commands, user in-
terfaces, processes and guidance. Elsewhere we’ve described
these requirements as "software factories" [4]. We’ve found
that this can be an overloaded term, referring as it does to
several distinct concepts:

an organization designed to develop a particular kind
of software;

a set of processes that execute to deliver a particular
kind of software;

an integrated set of interactive software tools de-
signed to support such processes.

In this article we are mainly interested in the third of
these, which we’ll call here the Domain-Specific Interac-
tion Development Environment, or Domain-Specific IDE.
We’ll look now at some of the requirements for this.

3.1 Agility
Agile programming embraces evolutionary change

throughout the software development lifecycle and is increas-
ingly recognized as best practice for software development.
The Domain-Specific IDE must support agile software devel-
opment practices. The IDE must avoid processes or commands
that force the developer into premature commitments that are
expensive and time-consuming to reverse. Examples of these
are code generation steps or "wizards" that cannot be repeated
at a later time. The use of models within the IDE can help with
this, as illustrated by Microsoft’s Web Services Software Fac-
tory: Modeling Edition [5].

3.2 Integrating Multiple Languages
The definition of software inevitably involves a combi-

nation of languages. Even in the most traditional environ-
ment there will be distinct languages for programming and
for defining and manipulating data. Today’s popular soft-
ware stacks involve multiple languages: for .NET they in-2 See <http://www.martinfowler.com/bliki/InternalDslStyle.html>.

20 UPGRADE Vol. IX, No. 2, April 2008 © Novática

Model-Driven Software Development

clude C#, Visual Basic, SQL, and many dialects of XML
e.g. XAML, with domain-specific languages added to the
mix.

As soon as the artefacts implemented by these languages
cross-reference each other, as they must, we find breakdowns
in agility. For example, renaming a class or a namespace in
a code file can cause compilation errors in a XAML file
which refers to the class or namespace. Finding and cor-
recting such errors can be costly, and a better solution would
be a refactoring engine that spans multiple languages. This
means that new domain-specific languages should be able
to participate in such a refactoring engine, in order to be
first-class citizens in the IDE.

One approach to alleviating such breakdowns is to ex-
pand the scope of one language to cover more of the
lifecycle. Good examples of this approach are the latest
versions of C# and VB .NET, which incorporate LINQ (Lan-
guage-Integrated Query) giving strongly-typed integrated
capabilities for accessing data stores. Further down this route
would be more facilities in these languages for enabling
embedded DSLs2 . Few truly multi-paradigm languages ex-
ist today, though. LISP was the first example of a multi-
paradigm language, and has fallen out of widespread use in
favour of the strongly-typed object oriented programming
languages which are commonly in use today. We’re sure
that these languages do not represent the ultimate destiny
of programming: new developments in programming lan-
guages such as F# [6] enable considerable increases in ex-
pressive power and the design of rich abstractions. F# is
complicated, though, and truly mastering it may be out of
the reach of many software developers.

But however powerful the language, it is unlikely ever
to be the case that a single language can successfully span
the entire software lifecycle. Whether through limitations
in languages or through limitations in their users, techniques
for integrating multiple languages will inevitably be re-
quired.

3.3 Code Generation and "Reverse Engineering"
Code generation is an increasingly prevalent feature of

modern IDEs that allows designs to be expressed in do-
main-specific terms. Code is often generated from models,
defined in a domain-specific modelling language or in UML.
Code can also be generated from other artefacts such as
XML dialects, domain-specific textual languages, data held
in databases, data captured from a What You See Is What
You Get (WYSIWYG) editor (e.g. Windows Forms) or via
User Interface (UI) automation (wizards, snippets etc). The
advantages of code-generation are a substantial reduction
in cost and errors for the creation of repetitive boilerplate
code. Code generation does, however, have several poten-
tial disadvantages:

Non-repeatability. A badly-designed code generation
system can lose the developer’s input after generation, forc-
ing the developer to commit to a set of values and making it
difficult to change their mind.

Hand-modification. A system that requires code to

be modified by hand after it has been generated may pre-
vent a re-generation without erasing the hand-modifications,
unless markers are placed in the generated code to indicate
the hand-written parts, which can make the code unpleas-
ant to read.

Difficulty of interfacing generated and hand-writ-
ten code. Languages features such as C#’s partial classes,
in which a single class can be partially defined in multiple
files, are essential to enable the combination of generated
and hand-written code.

Difficulty of modification. If the generated code is
not what is required, for example it needs to be modified to
introduce additional aspects such as logging or events, then
it may be necessary to change the code generator itself to
make such modifications. Such changes can be error-prone
and incur a considerable test burden.

In the early days of model-driven development there was
a strong tendency amongst the vendors of model-driven tools
to claim the capability to do "reverse engineering", i.e. to
create a model by reading and parsing a codebase. It is wrong
to think of such a procedure as the inverse of code genera-
tion. Useful tools can be created for visualizing a large
codebase, for example showing namespaces, dependencies,
class hierarchies, call graphs etc. These tools operate at the
same level of abstraction as the code and are used to help
understand it at that level. By contrast, code generation
schemes transform representations from a domain to an-
other, more general domain. It is possible to reverse the
generation process to visualize generated code in terms of
the source artefacts from which it is generated, but it is not
generally feasible to extract domain-specific representations
from an arbitrary hand-written codebase.

3.4 Validation, Debugging and Testing
One of the most compelling advantages of domain-spe-

cific representations is the ability to validate software arte-
facts at an appropriate level of abstraction. It is much easier,
for example, to establish that communication paths in a lay-
ered architecture conform to the architecture’s rules in a
model of layers, components and connections, than it is by
trying to deduce the communication paths from the even-
tual code. Simple constraint violations, such as non-unique-
ness of property names or cycles in supposedly acyclic
graphs, can be detected and fixed as early as possible in the
lifecycle.

Validation can be "hard", enforced by a user experience
that simply does not allow invalid configurations to be cre-
ated, or "soft", i.e. evaluated on demand with error and
warning messages referring the developer to the source of
the problem. Hard validations are usually more expensive
to implement, but offer a more habitable user experience;
soft validations rely on carefully written error messages that
effectively direct the user to the root problem. It is impor-
tant to be able to save invalid representations: the IDE should
never force the developer to re-organize their life in order
simply to save their work.

Debugging should also offer a domain-specific experi-

UPGRADE Vol. IX, No. 2, April 2008 21© Novática

Model-Driven Software Development

ence. If the software is described in terms of domain-spe-
cific concepts then its execution may be observed and
stepped through in terms of the same concepts. Implement-
ing a domain-specific modelling language, for complete-
ness, should include implementing debugger plugins that
enable program execution to be visualized and controlled
in domain-specific terms.

Domain-specific development also impacts testing. The
designer of a domain-specific language has two kinds of
testing to think about: testing that the DSL does what it is
supposed to do, and providing an environmen, e.g. a gener-
ated test harness3 , for users of the DSL to test the systems
that they build using it.

3.5 Building the Domain Specific IDE
We’ve observed that narrowing the domain can improve

productivity, but involves building more tools, which in turn
means that it must be relatively cheap to do so. We tackle
this by applying domain-specific techniques to the tool-
building problem. We analyze the domains involved in tool-
building, and build tools that support development in those
domains.

Work on model-driven development over the past dec-
ade or so has involved a lot of thought about "meta-model-
ling". This subject is fraught with misunderstanding and
confusion. Popular definitions are simply wrong: for ex-
ample, the oft-heard definition of a meta-model as "a model
of a model" is both unhelpful and incorrect. If a meta-model
is anything, it is a model of the concepts expressed by a
modelling language. Discussions about meta-modelling
habitually degenerate into a kind of cultish mysticism al-
most entirely unconnected with the business of making soft-
ware.

In practice, a meta-model is a model which is used (usu-
ally through code-generation) to build some aspects of a
modelling tool. The result is that the tool can be built more
cheaply, and thus bring extra efficiencies to solving the ac-
tual problem at hand. We’d like to generalize this principle
to the entire development environment. We don’t just model
modelling concepts, we model all aspects of how the IDE is
constructed, extended and deployed. We’re especially in-
terested in how all of the pieces that constitute a domain-
specific IDE extension can be modelled: these include lan-
guages, commands, extra data carried by the project sys-
tem, forms and toolwindows to interact with that data, and
so on.

4 Conclusion
This article has proposed that an important step forward

in software development tools is the development of do-
main-specific interactive development environments. Such

tools recognise the advantages of model-driven develop-
ment and domain-specific languages, while assimilating
these techniques into an overall development experience
tuned for the specific problem at hand.

References
[1] Steve Cook, Gareth Jones, Stuart Kent, Alan Wills.

"Domain-Specific Development with Visual Studio
DSL Tools", Addison-Wesley 2007. Also see <http://
msdn.com/vsx>.

[2] Eclipse Foundation. Graphical Modeling Framework
(GMF). <http://www.eclipse.org/gmf/>

[3] MetaCase. MetaEdit+. <http://www.metacase.com/>.
[4] Jack Greenfield, Keith Short, Steve Cook, Stuart Kent.

"Software Factories: Assembling Applications with
Patterns, Models, Frameworks and Tools", John Wiley
2004.

[5] Microsoft. Web Service Software Factory: Modeling
Edition. MSDN Library. <http://msdn2.microsoft.com/
en-gb/library/bb931187.aspx>.

[6] Microsoft Research. <http://research.microsoft.com/
fsharp/fsharp.aspx>.

3 In software testing, a test harness or automated test framework
is a collection of software and test data configured to test a pro-
gram unit by running it under varying conditions and monitor its
behavior and outputs. <http://en.wikipedia.org/wiki/Test_harness>.

22 UPGRADE Vol. IX, No. 2, April 2008 © Novática

Model-Driven Software Development

Keywords: Constraint Checking, Constraint Reasoning,
Domain-Specific Modeling, Model-Driven Engineering,
Modeling Guidance.

1 Introduction
Model-Driven Engineering (MDE) [1] has emerged as

a powerful approach to building complex enterprise sys-
tems. MDE allows developers to build solutions using ab-
stractions, such as custom diagramming languages, tailored
to their solution domain. For example, in the domain of
deploying software to servers in a datacenter, developers
can manipulate visual diagrams showing how software com-
ponents are mapped to individual hosts, as shown in Figure 1.

Model Intelligence: an Approach to Modeling Guidance

Jules White, Douglas C. Schmidt, Andrey Nechypurenko, and Egon Wuchner

Model-Driven Engineering (MDE) facilitates building solutions in many enterprise application domains through its use
of domain-specific abstractions and constraints. An important attribute of MDE approaches is their ability to check a
solution for domain-specific requirements, such as security constraints, that are hard to evaluate using traditional source-
code focused development efforts. The challenge in many enterprise domains, however, is finding a legitimate solution,
not merely checking solution correctness. For these domains, model intelligence that uses domain constraints to guide
modelers is needed. This paper shows how existing constraint specification and checking practices, such as the Object
Constraint Language, can be adapted and leveraged to guide users towards correct solutions using visual cues.

Authors

Jules White is a Ph.D. student in the Department of Electrical
Engineering and Computer Science (EECS) at Vanderbilt
University. His research focuses on using constraint
optimization techniques for modeling guidance and
optimization, constraint-based automated assembly of
component applications, model-driven development, and
distributed Java systems. He is currently the lead developer of
the Generic Eclipse Modeling System (GEMS) <http://
www.eclipse.org/gmt/gems>, a part of the Eclipse GMT project.
Before joining the DOC group, he worked for IBM’s Cambridge
Innovation Center and was involved with constraint modeling
and rule-based systems. <jules.white@ gmail.com>.

Douglas C. Schmidt is a Full Professor in the Electrical
Engineering and Computer Science (EECS) Department,
Associate Chair of the Computer Science and Engineering
program, and a Senior Research Scientist at the Institute for
Software Integrated Systems (ISIS) at Vanderbilt University,
Nashville, TN. For the past two decades, he has led pioneering
research on patterns, optimization techniques, and empirical
analyses of object-oriented and component-based frameworks
and model-driven development tools that facilitate the
development of distributed middleware and applications. Dr.
Schmidt is an expert on distributed computing patterns and
middleware frameworks and has published over 350 technical
papers and 9 books that cover a range of topics including high-

performance communication software systems, parallel
processing for high-speed networking protocols, real-time
distributed object computing, object-oriented patterns for
concurrent and distributed systems, and model-driven
development tools. <d.schmidt@vanderbilt.edu>.

Egon Wuchner works as a researcher and consultant in the
Coporate Technology SE2 department of Siemens AG in
Munich, Germany. He is an expert in software architecture and
distributed systems. His research focuses on concepts,
technologies and tools to improve the development of large
distributed systems, e.g. their handling of operational
requirements, their comprehensibility and maintanability. His
recent research has been in Aspect-oriented Software
Development and Model-Driven Development.
<egon.wuchner@siemens.com>.

Andrey Nechypurenko is a senior software engineer in
Siemens AG Corporate Technology (CT SE2). Mr.
Nechypurenko provides consulting services for Siemens busi-
ness units focusing on distributed real-time and embedded
systems. Mr. Nechypurenko also participates in research
activities on model driven development and parallel computing.
Before joining Siemens AG, he worked in the Ukraine on high
performance distributed systems in the telecommunications
domain. <andrey.nechypurenko@ siemens.com>.

A major benefit that MDE approaches provide is that
custom constraints for each domain can be captured and
embedded into an MDE tool. These domain constraints are
properties, such as the memory demands of a software com-
ponent on a server, that cannot be easily checked by a com-
piler or other third-generation programming language tool.
The domain constraints serve as a domain solution com-
piler that can significantly improve the confidence in the
correctness of a solution. The most widely used constraint
specification language is the Object Constraint Language
(OCL) [2].

Although MDE can improve solution correctness and
catch previously hard to identify errors, in many domains

UPGRADE Vol. IX, No. 2, April 2008 23© Novática

Model-Driven Software Development

Figure 1: Deployment Model for a Datacenter.

Figure 2: Model Editing and Constraint Checking.

the major challenge is deriving the correct solution, not
checking solution correctness. For example, when deploy-
ing software components to servers in a datacenter, each
component can have numerous functional constraints, such
as requiring co-hosting a specific set of other components
with it, and non-functional constraints, such as requiring a
firewalled host, that make developing a deployment model
hard. When faced with large enterprise models with 10s,
100s, or 1,000s of model elements and multiple constraints
per element, manual model building and validation ap-
proaches do not scale.

Enterprise models can also contain global constraints,
such as stipulating that no host’s allocation of components

exceeds its available RAM, which further complicates
modeling. Although languages like OCL can be used to
validate a solution, they still do not make finding the cor-
rect solution any easier. Developers must still manually
construct models and invoke constraint checking to see if a
mistake has been made.

The following properties of enterprise models make
building models challenging:

Enterprise models are often large and may contain
multiple views, making it hard or infeasible for modelers to
see all the information required to make a complex modeling
decision.

Constraints in enterprise systems often involve func-

24 UPGRADE Vol. IX, No. 2, April 2008 © Novática

Model-Driven Software Development

Figure 3: Model Editing Sequence for Model Intelligence.

Figure 4: Model Intelligence Queries Across Multiple Constraint Languages.

UPGRADE Vol. IX, No. 2, April 2008 25© Novática

Model-Driven Software Development

tional and non-functional concerns that are scattered across
multiple views or aspects of a model and are hard to solve
manually, and

Enterprise modeling solutions may need to satisfy
complex global constraints or provide optimality, both of
which require finding and evaluating a large number of
potential solution models.

Current model construction techniques are largely
manual processes. The difficulty of understanding an entire
large enterprise model, coupled with the need to find and
evaluate a large number of potential solutions, makes en-
terprise modeling hard.

To motivate the need for tool support to help modelers
deduce solutions to domain constraints, we use an applica-
tion for modeling the deployment of software components
to servers in a datacenter. Ideally, when creating a deploy-
ment, as a developer clicked on each individual software
component to deploy it, the underlying tool infrastructure
could use the domain constraints to derive the viable hosts
for the component. We refer to these mechanisms for guid-
ing modelers towards correct solutions as model intelligence.

2 Limitations of Current Constraint Checking Ap-
proaches

To motivate the challenges of using existing constraint
infrastructure, such as OCL, as a guidance mechanism, we
will evaluate a simple constraint for deploying a software
component to a server. For each component, the host that it
is deployed to should have the correct OS for which the
component is compiled. This constraint can be captured in
OCL as:

context:SoftwareComponent;

inv: self.hostingServer.OS = self.requiredOS;

After a SoftwareComponent has been deployed to
a server, the above constraint checks that the host (stored in
the hostingServer variable) has the OS required by the
component. As shown Figure 2, to utilize the constraint, the
modeler first makes a change to the model (Step 1), invokes
the constraint checker (Step 2), and then sees if an error
state has been entered (Step 3). The challenge is that the
modeler cannot predict ahead of time if the model is being
transitioned to an invalid state. A state is only checked for
errors after control has been transitioned to it.

One way around the inability to check the constraint
before the host is committed to the SoftwareComponent
is to use OCL preconditions as guards on transitions. An
OCL precondition is an expression that must hold true be-
fore an operation is executed. The chief problem of using
OCL preconditions as guards, however, is that they are de-
signed to specify the correct behavior of an operation per-
formed by the implementation of the model. Using an OCL
precondition as a guard during modeling requires defining
the constraint in terms of the operation performed by the
modeling tool and not the model.

For example, the precondition that should be imposed

to check for the correct OS is a constraint on an operation
(e.g., creating a connection) performed by the modeling tool,
not by the model. To define the OCL precondition, therefore,
developers must define the OCL constraint in terms of the
modeling tool’s definition of the operation, which may not use
the same terminology as the model. Moreover, defining the
constraint as a precondition on an operation performed by the
modeling tool requires developers to create a duplicate con-
straint to check if an existing model state is correct.

Without two constraints (one to check the correctness
of the modeling tool action and one to check the correct-
ness of an already constructed model state) it is impossible
to identify operation endpoints and ensure model consist-
ency. The OCL precondition approach therefore adds com-
plexity by requiring developers to maintain separate (and
not necessarily identical) definitions of the constraint that
can potentially drift out of sync. The precondition approach
also couples the constraint to a single modeling platform
since the precondition is defined in terms of the connection
operation exposed by the tool, not the model.

3 Model Intelligence: an Approach to Modeling
Guidance

A modeling tool can implement model intelligence, by
using constraints to derive valid end states for a model edit
before committing the change to the model. Traditional
mechanisms of specifying constraints associate a constraint
with objects (e.g., SoftwareComponents) rather than
the relationships between the objects (e.g., the deployment
relationship between a SoftwareComponent and a
Server).

To determine the validity of a relationship between two
objects, therefore, the relationship must be created and com-
mitted to the model so that constraints on the two objects
associated with the relationship can be checked.

The transitions in the state diagram from Figure 2 cor-
respond to the creation of relationships between objects. To
support model intelligence, a tool needs to use domain con-
straints to check the correctness of the modification of rela-
tionships between objects in a model before the modifica-
tion is committed to the model. If constraints are associated
with the relationships rather than the objects, a tool can use
the constraints associated with the relationship to deduce
valid end states and suggest transitions to a modeler.

3.1 Constraining Relationships
Relationships between objects are edges in the underly-

ing object graph of a model. Each edge has a source and
target object. Using this understanding of relationships,
constraints can be created that specify the correctness of a
relationship in terms of properties of the source and target
elements.

For example, the deployment of a SoftwareComponent
to a Server is represented as a deployment relationship. A
constraint can be applied to a deployment relationship and
specified in terms of the properties of the source (e.g., a
SoftwareComponent) and the target (e.g., a Server):

26 UPGRADE Vol. IX, No. 2, April 2008 © Novática

Model-Driven Software Development

context:Deployment;
inv: source.requiredOS = target.OS;

A key property of associating constraints and specify-
ing them in terms of the source and target of the relation-
ship is that a constraint can be used to check the correctness
of the creation of a relationship before the relationship is
committed to a model. Prior to the creation of a relation-
ship, the proposed source and target elements can be sub-
stituted into the constraint expression and the constraint
expression checked for correctness. If the constraint expres-
sion holds true for the proposed source and target elements,
the corresponding relationship can be created in the model.

Section 2 showed that using existing OCL approaches
to model intelligence requires maintaining separate specifi-
cations of each constraint. If constraints are associated with
relationships and expressed in terms of the source and tar-
gets of a relationship, they can be used to check the validity
of a modeling action before it is committed to the model.
Moreover, the same constraint can be used to check exist-
ing relationships between modeling elements, which can
not be done with the standard OCL approach.

3.2 Relationship Endpoint Derivation
A model can be viewed as a knowledge base, i.e., the

model elements define facts about the solution. The goal of
model intelligence is to run queries against the knowledge
base to deduce the valid endpoints (e.g., valid hosts for a
component) of a relationship that is being created by a
modeler. In terms of the state diagram detailing a model
editing scenario shown in Figure 3, the queries derive the
valid states to which a model can transition.

The creation of a relationship begins by modelers se-

lecting a relationship type (e.g., a deployment relationship)
and one endpoint for the new relationship (e.g., a
SoftwareComponent). Model intelligence uses the re-
lationship type to determine the constraints that must hold
for the relationship and then uses the constraints to create
queries to search the knowledge base for valid endpoints to
create the relationship, as shown in Step 2 of Figure 3. The
valid endpoints determine the valid states to which the model
can transition. As shown in Step 3 of Figure 3, the transi-
tions that lead to these valid states can then be suggested to
modelers as valid ways of completing an in-progress
modeling edit.

The creation of a new relationship begins by the modeler
selecting a source for the relationship and a type of rela-
tionship to create. Each relationship type has a set of con-
straints associated with it. Once model intelligence knows
the source object and the OCL constraints on the relation-
ship being modified, a query can be issued to find valid
endpoints to complete the relationship. Using the OS de-
ployment constraint from Section 2 the query to find
endpoints for a deployment relationship would be:

Server.allInstances()->collect(target |
 target.OS = source.OS);

In this example, model intelligence would specify to the
OCL engine that the source variable mapped to the
SoftwareComponent that had been set as the source of
the deployment relationship. The query would then return
the list of all Servers that had the correct OS for the compo-
nent. For an arbitrary relationship, with constraint Con-
straint, between elements Source and Target of types
SourceType and TargetType, a query can be com-

Figure 5: The Deployment Command Showing Valid Endpoints Derived via Model Intelligence.

UPGRADE Vol. IX, No. 2, April 2008 27© Novática

Model-Driven Software Development

Figure 6: A Model Intelligence Batch Process to Assign a Host for Every Component.

posed to derive valid endpoints. Assuming that a relation-
ship has endpoint Source set, a query can be issued to
find potential values for Target as follow:

TargetType->allInstances()->collect(target |
Constraint);

where Constraint is a boolean expression over the
source and target variables. More generally, the query can
be expressed as: Find all elements of type TargetType
where Constraint holds true if the source is Source.

3.3 Endpoint Derivation Across Multiple
Constraint Languages

Although we have only focused on OCL thus far, the
generalized query definition from Section 3.2 can be mapped
to other constraint or expression languages, as well. In prior
work [4], we implemented model intelligence using OCL,
Prolog, BeanShell, and Groovy. For example, Prolog natu-
rally defines a knowledge base as a set of facts defined us-
ing predicate logic. Queries can be issued over a Prolog

knowledge base by specifying constraints that must be ad-
hered to by the facts returned. Model intelligence can also
be used to derive solutions that are restricted by a group of
constraints defined in multiple heterogeneous languages.
An iterative result filtering process can be used to derive
endpoints that satisfy constraints specified in multiple lan-
guages, as shown in Figure 4.

Initially, model intelligence issues a query to derive po-
tential solutions that respect the constraint set of one con-
straint language.

The results of the query are stored in the set R0. For each
subsequent query language Ci, the results of the query that
satisfy the language’s constraint set are stored in Ri. For each
constraint language Ci, where i > 0, model intelligence issues a
query using a modified version of the query format defined in
Section 3.2: Find all elements of type TargetType where
Constraint holds true if the source is Source and the
element is a member of the set Ri-1.

The modified version of the query introduces a new con-
straint on the solution returned: all elements returned as a
result were a member of the previous result set. A simple

28 UPGRADE Vol. IX, No. 2, April 2008 © Novática

Model-Driven Software Development

mechanism for specifying result sets is to associate a unique
ID with each modeling element and to capture query results
as lists of these IDs. The modified queries can then be de-
fined by checking to ensure that both the constraint set holds
and the ID property of each returned modeling element is
contained by the previous result set.

4 Integrating Model Intelligence with the Com-
mand Pattern

There are a large number of uses for model intelligence,
including automatically performing an autonomous batch
process of model edits and providing visual feedback to
modelers. In this section, we show how model intelligence
can be integrated with the Command pattern [3] to provide
visual cues to aid modelers in correctly completing modeling
actions. The Command pattern uses an object to encapsu-
late an action and its needed data and is used in many graphi-
cal modeling frameworks, such as the Eclipse Graphical
Editor Framework [5]. As a modeler edits a model, com-
mands are created and executed on the model to perform
the actions of the modeler.

Modeling platforms provide tools, such as a connection
tool, that a modeler uses to manipulate a model. Each tool
is backed by an individual command object, such as a con-
nection command. When a modeler chooses a tool, an in-
stance of the corresponding command class is created. Sub-
sequent pointing, clicking, and typing by the user, sets the
arguments (e.g., connection endpoints) operated on by the
command. When the arguments of the command are fully
specified (e.g., both endpoints of a connection command
are set), the command executes.

Section 3 described the ability to highlight the valid de-
ployment locations for a software component after a modeler
clicked on it to initiate a deployment connection. This func-
tionality can be achieved by combining model intelligence
with a deployment connection command. After the initial
argument to the deployment connection command is set,
the command can use model intelligence to query for valid
deployment locations. If there is a single server that can
host the component, the command can autonomously choose
it as the deployment location and execute. If there is more
than one potential valid host, each host can be highlighted
via a command to help the user select the command’s final
argument, as shown in Figure 5.

5 Concluding Remarks
Our experience developing models for enterprise appli-

cation domains indicates that simply determining if a model
is correct is not always helpful. We have learned that using
constraints to verify the correctness of relationships between
objects (rather than just individual object states) allows
modeling tools to guide modelers towards correct solutions
by suggesting ways of completing edits. Moreover, batch
processes can be built atop of suggestion mechanisms to
allow tools to autonomously complete sets of modeling ac-
tions. For example, a batch process can be created to de-
ploy a large group of software components, by deriving sets

of valid hosts for each component and intelligently select-
ing a host from each set, as shown in Figure 6. In other
work [4], we have used model intelligence as the basis for
creating batch modeling processes that use constraint solv-
ers to automate large sets of modeling actions and optimally
select endpoints for relationships to satisfy global constraints
or optimization goals.

Our implementation of model intelligence for the Eclipse
Modeling Framework [6], called GEMS EMF Intelligence,
is an open-source project available from <www.eclipse.org/
gmt/gems>.

References
[1] J. Bézivin. "In Search of a Basic Principle for Model

Driven Engineering", Novatica/Upgrade, V(2):21-
24, 2004.

[2] J.B. Warmer, A.G. Kleppe. "The Object Constraint
Language: Getting Your Models Ready for MDA".
Addison-Wesley Professional, New York, NY, USA,
2003. ISBN: 0321179366.

[3] E. Gamma, R. Helm, R. Johnson, J. Vlissides. "De-
sign Patterns: Elements of Reusable Object-oriented
Software", Addison-Wesley, Boston, MA, USA,
1995. ISBN: 0201633612.

[4] J. White, A. Nechypurenko, E. Wuchner, D.C.
Schmidt. "Reducing the Complexity of Designing
and Optimizing Large-scale Systems by Integrating
Constraint Solvers with Graphical Modeling Tools",
in "Designing Software-Intensive Systems: Methods
and Principles", edited by Dr. Pierre F. Tiako.
Langston University, Oklahoma, USA, 2008.

[5] Graphical Editor Framework, <www.eclipse.org/gef>.
[6] F. Budinsky, S.A. Brodsky, E. Merks. Eclipse Modeling

Framework. Pearson Education, Upper Saddle River,
NJ, USA, 2003.

UPGRADE Vol. IX, No. 2, April 2008 29© Novática

Model-Driven Software Development

Keywords: EMF Compare, Model Comparison , Model
Differences.

1 Introduction
The last decade witnessed a dramatic growth of soft-

ware intricacy and different techniques and methodologies
have been proposed to ease complex system development.
Model Driven Engineering (MDE) [1] shifts the focus of
software development from coding to modelling and lets
software architects harness the opportunity of dealing with
higher-level abstractions. In this respect, models represent
descriptions of phenomena of the real (or imaginary) world
which are usually complete with regard to the designer’s
goal, i.e. a specific task which the designer is pursuing such
as code generation or software analysis. However, models
reach their fundamental effectiveness when they can be
manipulated by means of automated transformations in or-
der to obtain different kinds of artifacts ranging from other
models to documentation or even implementation code. It
is important that designers are able to comprehend the vari-
ous kinds of design-level structural evolution that a soft-
ware system undergoes throughout its entire life-cycle.
Nurturing the detection of differences between models is
essential to model development and management practices,
which are traditionally not neglected in high-quality soft-
ware development processes [2]. Thus, these activities are
crucial not only for understanding the system design and its
evolution but also for obtaining an accurate picture of the
quality requirements of the system so that it can be consist-
ently evolved.

The problem of model differences is intrinsically com-
plex and requires algorithms and notations [3] [4] which
permit to benefit fully from its potential in MDE. This pa-
per presents part of the state of the art in calculating model
differences and outlines a conceptual framework which pre-
scribes crucial requirements to enhance differences to first-
class entities. Accordingly, a solution must necessarily have
a high degree of separation between three relevant aspects
in model differentiation: calculation, representation, and
visualization. In fact, in current proposals the distinctions
between the three aspects are often blurred thus compro-

mising the adoption of generic modelling techniques [5].
In this paper, we discuss the problem of model differ-
ences and illustrate how EMF Compare [6] addresses
this difficult task in the Eclipse generic platform. In par-
ticular, the approach is metamodel-independent, i.e. it ap-
plies to models which conform to arbitrary metamodels,
and is based on similarity techniques (see Sect. 2) which
provide enhanced flexibility and interoperability. Moreo-
ver, it is model-based in the sense that the outcome of a
model comparison is represented by means of a model
which enables its manipulations in model-to-model or
model-to-text transformations.

The paper is structured as follows: in Section 2 an intro-
duction to the problem of model differences is presented
and a number of representation requirements are given.
Section 3 presents EMF Compare describing both calcula-
tion, representation, and an evaluation with regard to the

Model Differences in the Eclipse Modelling Framework
Cédric Brun and Alfonso Pierantonio

Increasingly, recording the various kinds of design-level structural evolution that a system undergoes throughout its entire
life-cycle is gaining a fundamental importance and cannot be neglected in software modeling and development. In this
respect, an interesting and useful operation between the designs of subsequent system versions is the difference manage-
ment consisting in calculation, representation, and visualization. This work presents EMF Compare, an approach to
model difference calculation and representation for the EMF (Eclipse Modelling Framework). Apart from enhancing the
rank of model differences to that of first-class artifacts according to the "everything is a model" principle, the approach
presents several properties which are discussed according to a conceptual framework.

Authors

Cédric Brun is a Research Engineer at Obeo and Project Lead
of the EMF compare project in Eclipse. In charge of the Acceleo
community, he also works on software evolution, re-
engineering and cartography of legacy systems through model
driven processes. He is a graduate of the Polytech engineering
school and a graduate and research Master at the University of
Nantes, and has specialised in software engineering and model
driven engineering. Prior to his current jobs, he was an active
contributor to Open Source development and worked in
Guangzhou on a global video conference solution for the
Chinese Education and Research Network (CERNET)
<cedric.brun@obeo.fr>.

Alfonso Pierantonio is Associate Professor in the Computer
Science Department at the University of L’Aquila, Italy. His
present research interests include general model engineering
and more specifically model transformation and techniques for
model differencing and management in current model-
engineering platforms. He has been involved in program and
organization committees of conferences and co-edited several
special issues on scientific journals about these subjects.
<alfonso@di.univaq.it>.

30 UPGRADE Vol. IX, No. 2, April 2008 © Novática

Model-Driven Software Development

requirements introduced in Section 2. Finally some conclu-
sions are drawn.

2 Model Difference
As previously mentioned, the problem of model

differenciation is intrinsically complex and in order to ana-
lyse and/or propose a possible solution, it is important to
decompose the problem into its constituent parts. In fact,
its complexity is manifold and refers at least to the follow-
ing aspects:

a) calculation: a procedure, method or algorithm able
to compare or contrast two distinct models;

b) representation: the outcome of the calculation must
be represented in some form, current notations present de-
ficiencies since they are heavily affected by the calculation
method or by the proposed application;

c) visualization: model differences often requires to be
visualized in a human-readable notation which let the de-
signer grasp the rationale behind the modification which
the models underwent during their lifetime.

In the sequel of the paper we will discuss these aspects
according to the available literature and will try to present
and characterize EMF Compare according to them.

Calculation. In the context of software evolution, dif-
ference calculation has been intensively investigated as
witnessed by a number of approaches ranging from text–
comparisons to model–differencing techniques. As stated
by T. Mens in [7], delta calculation algorithms can be clas-
sified by different points of view, each of which is related
to the particular application the approach is used for. Spe-
cialized differencing methods have been introduced to
strictly compare Universal Modelling Language diagrams,
such as [8] [9] [10] amongst others. These approaches can
be divided in two main categories depending whether they
make use of persistent identifiers or similarity metrics: the
former relies heavily on identifiers which are assigned to
model elements by the modelling tools. This compromises
interoperability and locks the models within a specific plat-
form since identifiers are not universally computable. The
latter approach establishes how similar two model elements
are by comparing not only the properties local to the ele-
ments but also their global properties which makes the
method agnostic of the modeling tools being independent
from the any identification mechanism thus making the
method independent of modelling tools and indentification
mechanisms. A generalization of the work by Z. Xing and
E. Stroulia [10] is an approach based on structural similar-
ity which is able to compare not only UML (Universal
Modelling Language) models but also models conforming
to any arbitrary metamodel [11]. This represents an advance
towards a wider acceptance of difference and version man-
agement in software development and generic modelling
platforms (for instance [12] [13]).

Representation. Detecting differences and identifying
mappings among distinct versions of a system design is pre-
paratory to represent at least part of such knowledge. Find-
ing a suitable representation for model differences is cru-
cial for its exploitation, as for instance deriving refactoring
operations from a delta document1 describing how a data-
base schema evolved in time. However, the effectiveness
of representation of model differences is often compromised
by factors such as the calculation method or the scope of
the model difference. For instance, in the case of edit scripts
the representation is operational since it describes how to
modify the initial model in order to obtain the final model.
Clearly, such a representation notation suffers from a lack
of abstraction and, let alone the capability of reconstructing
the final model, does not easily allow any further manipu-
lation or analysis since it requires ad-hoc tools. In other
cases, the representation may even be model-based (which
permits further manipulations of the differences), as in the
case of coloring, but the visualization and the representa-
tion tend to overlap and the overall method is affected by
the way the differences are computed, i.e. in a set-theoretic
fashion. In general, a proper representation must contain
all the information defining the differences and must make
this knowledge available to further analyses and manipula-
tions. Thus, we believe it must be given in terms of abstract
syntax by introducing suitable metamodels as outlined be-
low.

Visualization. Differences often require to be presented
according to a specific need or scope highlighting those
pieces of information which are relevant only for the pre-
fixed goal. In other words, a visualization is realized by
giving a concrete syntax which renders the abstract syntax
(representation) and may vary from intuitive diagrammatic
notations to textual catalogues as, for instance, spreadsheet
data. The same representation may include different
visualizations depending on the specific purpose the de-
signer has in mind. In this respect, both edi scripts and col-
ouring represent two different visualizations although they
are generated directly by the specific differencing algorithm
and letting the representation be rendered by means of in-
ternal formats which prevent them from being processed in
tool chains. For instance, edit scripts render both represen-
tation and visualization with the same notation.

Clearly, the calculations and representations are the cen-
tral ingredients for any solution. In particular, we are inter-
ested in those representations which raise model differences
to the rank of first class objects fulfilling the "everything is
a model" principle [5]. As a consequence, a number of de-
sirable properties must be imposed on representation tech-
niques as discussed in [14] and described below.

1) model-based, the outcome of a difference calcula-
tion must be represented as a model to enable a wide range
of possibilities, such as subsequent analysis, conflict detec-
tion or manipulations;

2) compactness, the difference model must be compact
and contain only the necessary information to represent the
modifications, without duplicating parts such as those model

1 A document which lists the changes in the contents of another
document.

UPGRADE Vol. IX, No. 2, April 2008 31© Novática

Model-Driven Software Development

elements which are not involved in the change;
3) self-contained, a difference model must not rely on

external sources of information, as for instance references
to base model elements or base metamodels;

4) transformative, each difference model must induce
a transformation, such that whenever it is applied to the
initial model it yields the final model. Moreover, the trans-
formation must also be applicable to any other model which
is possibly left unchanged in case the elements specified in
the difference model are not contained in it;

5) compositionality, the result of subsequent or paral-
lel modifications is a difference model whose definition
depends only on difference models being composed and is
compatible with the induced transformations;

6) metamodel independence, the representation tech-
niques must be agnostic of the base metamodel, i.e., the
metamodel which the base models conform to. In other
words, it must be not limited to specific metamodels, as for
instance happens for certain calculation methods (e.g., [9]
[10]) which are given for the UML metamodel.

The above discussion presents a minimal set of require-
ments which should be taken into account in order to let a
generic modeling platform deal with an advanced form of
model management. In the next section, we will illustrate
EMF Compare showing how our approach fulfills most of
the described requirements.

3 EMF Compare
EMF Compare is an Eclipse project which was initiated

in 2006 at Eclipse Summit Europe, where the need for a
model comparison engine emerged. The Obeo and Intalio
companies [15] [16] contributed the first implementation
of this component which has had two stable releases since
that time. The goals of this component are to provide "out
of the box" model comparison and merge support. Even if
we think that one unique algorithm is able to provide good
results both in term of efficiency and performance, we are
aware that there may be several solutions to a problem, at
different levels of generality and which depend on the main
concerns one wants to address with model comparison (see
Sect. 2). That is why this component has been designed with
a high degree of extensibility in mind and every part of the
entire comparison process is customizable.

The global comparison process is generally admitted as
being composed of two main parts: the matching and the
differencing parts. In EMF Compare these parts are explic-
itly separate and processed by two kinds of data proces-
sors, the matching and the differencing engine, respectively.
These engines are pluggable components: generic engines
are provided to match and analyse any model conforming
to an arbitrary meta-model (they will be described in the
next section) but one can plug in new ones in order to adapt
these operations for a given meta-model or to experiment
with new algorithms.

Another strong aspect of this implementation is that we
think that models should be implemented as already sug-
gested. That is why EMF Compare is based on model rep-

resentations of both differencing and matching of two mod-
els. That means one can get those models and use them to
produce differences reports thanks to model-to-text trans-
formation, or can refactor the differencing model to ignore
some differences. In this respect, the method is model-based
according to the requirements in Section 2.

3.1 Calculation Method
Analysing models to identify the matching information

is the fundamental part of the comparison process and inac-
curacies in this phase will affect the quality of the overall
difference detection mechanism. Consequently this algo-
rithm produces most of the calculation complexity. In es-
sence, we have to consider all the elements of both versions
of the model and decide whether an element in the first
version is the same as another one in the second version.
We do use the "same" word as we do not want to test equal-
ity, we are just trying to find out if this element has a com-
mon ancestor. Next we will analyse the intrinsic differences
of these elements to produce the difference model.

The generic match engine is based on statistics, heuris-
tics, and instances which are compared with four different
metrics aggregated in an overall score of matching. These
metrics analyse the name of an element, its content, its type
and the relations it has with other elements; it returns a value
ranging from 0 (nothing in common) to 1 (identity) which
will be balanced with additional factors in order to get the
overall score. Especially, the "name" metric tries to find an
attribute standing for a name of the model element, the "type"
metric compares the meta-class features, this is useful if
you want to consider the possible types refactoring (an In-
terface changed in Class for instance). The "relation" metric
considers the linked instances both from containment and from
non-contained relations, respectively. Finally, the "content"
metric analyses the intrinsic content of the instance.

In general, the comparison uses a great deal of informa-
tion which are not relevant and that can be, therefore, called
information noise. The metrics gets "false high scores" be-
cause most of the data comes from default values which are
shared amongst instances. These cases have been processed
by means of a filter, which first analyses both models and
maintains a record of the features which "always have the
same values in both models", then ignores such features
while computing the metrics. As a consequence, the metric
scores are more realistic as they are not affected by this
information noise.

We only described the 2-way comparisons, since the 3-
way comparisons can be given in terms of

2-way comparisons as specified by the match model. In
particular, a difference can be an instance of either
Match2Elements or Match3Elements metaclasses with the
latter defined in terms of the several instances of the former.
Moreover, model elements which do not have a match are
referenced as an UnMatched entity.

In order to evaluate the score of a content match, we
first create a string representation of what is contained in
the instances, and then we compare both strings using a

32 UPGRADE Vol. IX, No. 2, April 2008 © Novática

Model-Driven Software Development

simple "string pairing" algorithm. Each metric uses the same
kind of process; it first gets a string representation of what
we call the "relations" of an element, and then compares
these strings.

Ideally, for each element of the first version we have to
discover the most similar element of the second version.
Unfortunately, most of the complexity lies there because it
needs to browse the second model for each element of the
first model. In the EMF Compare implementation we started
from the following assumptions: most of the things do not
change and the probability of moving an element outside
its "neighborhood" is really low. Thus, the chosen match-
ing strategy analyses both models at the same time, match-
ing the elements available within the limits of a given search
window. Upon completion of the analysis, elements which
are not matched will be compared with each other to pro-
duce new matches. The outcome is a match model which is,
in turn, passed to the differencing engine which operates in
a quite straightforward fashion. In fact, once elements from
both models are put in correspondence, they are compared
and eventual differences are evaluated.

With regard to the discussion in Section 2, the computa-
tion algorithm is based on a measure of similarity and does
not fall within the class of methods which make use of per-
sistent identifiers, which makes the computation quite gen-
eral and suitable for tool chaining and integration. The de-
composition of the algorithm in a matching and differencing
module permits the individual reuse of such components
and the opportunity for such components to be easily
adopted in the realization of additional functionalities, as
model patching, for instance.

3.2 Representation
Both match and differencing information are represented

by means of models which can be reused in model transfor-
mations; such models conform to the match and diff Ecore
meta-models [6]. A match model is a specialization of a
weaving model [5] which provides associations between
elements from the first model and elements from the sec-
ond model. Another data item which we encode in the model
is the overall score evaluated while performing the match-
ing.

In the rest of the section, the representation mechanism
of EMF Compare is evaluated with regard to the properties
given in Section 2. In particular, the approach satisfies the
model-based requirement since the calculated differences
are represented through models that conform to the pro-
vided diff metamodel mentioned above. Being more pre-
cise, a difference model reflects the changes made on the
first model to obtain the second one, representing them by
means of meta-classes like AddModelElement or
UpdateAttribute and difference containers called DiffGroup.
The AddModelElement metaclass has two references, one
to the element which has been added in the final model, and
another to the corresponding container in the initial one. In
this sense, the approach is metamodel independent. In fact,
the diff metamodel provides constructs able to represent

differences between arbitrary models and it does not make
any assumptions about the metamodel which the models
being differenced have to conform to.

With regard to the compactness, the approach produces
difference models which represent only the elements in-
volved in the changes and the differenced models are not
duplicated as in case of colouring. Moreover, EMF Com-
pare provides facilities to reduce the verbosity and the com-
plexity of the difference models. In order to understand them,
let us consider a rich metamodel like UML2: this metamodel
provides a huge expressiveness since each metaclass has a
many attributes and references. For instance, an associa-
tion between two classes involves many metamodel ele-
ments like AssociationEnds, Properties and so on. This
means that when we compare two UML models, the user is
overwhelmed by too many details and analysing them is
quite difficult. For instance, an added property may come
from the fact that the developer added an association and
that it is one of its end properties.

To cope with these problems, EMF Compare enables
the specification of higher level differences. In particular,
by means of meta-model extensions one can contribute a
new kind of difference, for instance
AddNavigableAssociation which will hide the three
AddModelElement detected for the association and the two
properties. With this new kind of difference a new proces-
sor is contributed which will refactor the original diff model
in order to create the new AddNavigableAssociation in-
stances. This is useful in order to get different kinds of granu-
larity on the difference and to handle specific merging in
which order is important.

The representation of the differences produced by means
of EMF Compare are transformative but with some limita-
tions. In particular, each difference model induces a trans-
formation which when applied to the first model generates
the final one. However, the representation is not context-
independent since the induced transformation cannot be
applied to arbitrary input models but only to the first one
used for the difference calculation. Nevertheless, this as-
pect does not compromise compositionality and difference
models of subsequent versions of a model can be composed
together.

Even if the difference model is deduced from the match
model, we do not want it to depend on the match model.
That means that every information item which is relevant
to the difference, and as such needed to merge these differ-
ences, should be available in the difference model. This
confers to the technique the important self-containment
property.

3.3 Performance
Manipulating realistic scale models and, in particular,

calculating differences between models can pose major
questions about computational efficiency. In fact, perform-
ance has been one of the key concerns with regard to the
generic engines provided with EMF Compare. For instance,
the latest release compares two UML2 models of approxi-

UPGRADE Vol. IX, No. 2, April 2008 33© Novática

Model-Driven Software Development

mately five thousand elements in a few seconds. Of course,
many parameters affect the performances of the compari-
son, the first one being the number of differences. The more
differences we have (especially added and removed ele-
ments), the more we need to iterate through the remaining
items at the end of the matching process. Model structure
is also an important parameter affecting the approach. In
fact, a more structured model allows faster comparisons
since the structure eases the task of finding matching ele-
ments.

This leads to another issue linked with the way the ge-
neric match engine analyses the models. An instance iden-
tity can be often regarded as valid within a certain locality,
as for instance a package containing a class is definitely an
important element for the class identity, but for some other
kind of models this assumption does not hold and the analy-
sis strategy is consequently inefficient.

Finally, the biggest problem with the current implemen-
tation is common to many systems based on threshold val-
ues, since these thresholds are based on massive experi-
ments on many real world models and are not based on any
formal theory nor able to auto-adapt themselves. Though
this pragmatic approach is useful and gives encouraging
results, it would probably benefit from techniques that pre-
vent elements from being "just under the metric threshold"
leading to an inaccurate comparison.

4 Conclusions and Future Work
Model differencing has been intensively investigated

over the last few years. There has been some work (e.g., [8]
[9] [10]) that proposed automated UML–aware differencing
algorithms which, in contrast with traditional lexical ap-
proaches, such as GNU diff-like tools (see [17] [18] [19]
among others), are capable of capturing the high-level logi-
cal/structural changes of a software system. More recently,
another approach [11] based on structural similarity ex-
tended differencing to metamodel independency, i.e., to
models conformant to an arbitrary metamodel. However,
the capability of tools to operate on change documentation
which conforms only to their own internal format tends to
lock software development into a single tool thus compro-
mising its exploitation as part of a tool chain.

In this paper we have presented EMF Compare, a
metamodel-independent approach to model differencing
based on similarity techniques and fully implemented on
the generic modeling platform provided by Eclipse. The
problem of model differences presents several difficulties
both in calculation and in representation. As opposed to other
approaches, EMF Compare rigorously adheres to the re-
quirements prescribed in [14] which assures that the method
may be fully integrated into tool chains where differences
can be manipulated or analysed by means of standard model-
driven tools. With regard to the work in [4] EMF Compare
shares many characteristics and provides a strong distinc-
tion among representation and visualization where the di-
viding line is somewhat blurred in the other approach.

Future work includes the enhancement of the

transformability property. In essence, difference models can
be viewed as model patches with a certain degree of
fuzziness or adjustability in their application. To this end,
different models as computed by EMF Compare require to
be further transformed in another models conforming to the
metamodels introduced in [14]. This would essentially need
to flatten the weaving model given in the difference model
as presented here.

Acknowledgements
We would like to thank Antonio Cicchetti and Davide

Di Ruscio for their long and insightful discussions on this
project.

References
[1] B. Selic. The Pragmatics of Model-driven Develop-

ment. IEEE Software, 20(5):19–25, 2003.
[2] R. Conradi, B. Westfechtel. Version models for soft-

ware configuration management. ACM Computing
Surveys, 30(2):232–282, 1998.

[3] D.S. Kolovos, R.F. Paige, F. A. Polack. Model com-
parison: a foundation for model composition and model
transformation testing Proceedings of the Int. Work-
shop GaMMa ’06, ACM Press, 2006, 13-20.

[4] Y. Lin, J. Zhang, J. Gray. Model Comparison: A Key
Challenge for Transformation Testing and Version
Control in Model Driven Software Development.
OOPSLA Workshop on Best Practices for Model-
Driven Software Development, 2004.

[5] J. Bézivin. On the Unification Power of Models. Jour-
nal on Software and System Modeling, 4(2):171–188,
2005.

[6] EMF Compare. <http://wiki.eclipse.org/index.php/
EMF_Compare>.

[7] T. Mens. A state-of-the-art survey on software merg-
ing. IEEE Trans. Softw. Eng. 28, 5 (2002), 449–462.

[8] M. Analen, I. Porres. Difference and union of models.
In UML 2003 - The Unified Modeling Language
(2003), vol. 2863 of LNCS, Springer-Verlag, pp. 2–
17.

[9] D. Ohst, M. Welle, U. Kelter. Differences between ver-
sions of UML diagrams. In ESEC/FSE-11: Proc. ESEC/
FSE (2003), ACM Press, pp. 227–236.

[10] Z. Xing, E. Stroulia. UMLDiff: an algorithm for ob-
ject-oriented design differencing. In 20th IEEE/ACM
ASE (2005), ACM, pp. 54–65.

[11] Y. Lin, J. Gray, F. Jouault. DSMDiff: A Differentiation
Tool for Domain-Specific Models, European Journal
of Information Systems (2007) 16, pp. 349–361.

[12] J. Bézivin, F. Jouault, P. Rosenthal, P. Valduriez.
Modeling in the Large and Modeling in the Small. In
Model Driven Architecture, European MDA Work-
shops: Foundations and Applications (2004), vol. 3599
of LNCS, Springer, pp. 33–46.

[13] A. Ledeczi, M.Maroti, A. Bakay, G. Karsai, J. Garrett,
C. Thomason, G. Nordstrom, J. Sprinkle, P. Volgyesi.
The Generic Modeling Environment. In Workshop on

34 UPGRADE Vol. IX, No. 2, April 2008 © Novática

Model-Driven Software Development

Intelligent Signal Processing, 2001.
[14] A. Cicchetti, D. di Ruscio, A. Pierantonio. A Metamodel

Independent Approach to Difference Representation.
Journal of Object Technology, vol. 6, no. 9, Special
Issue: TOOLS EUROPE 2007, Zurich (Switzerland),
October 2007, pages 165–185.

[15] Obeo. <http://www.obeo.fr/>
[16] Intalio. <http://www.intalio.com/>
[17] S. G. Eick, T. L. Graves, A. F. Karr, J. S.Marron,

A.Mockus. Does code decay? assessing the evidence
from change management data. IEEE Trans. Software
Eng., 27(1):1–12, 2001.

[18] S. G. Eick, J. L. Steffen, E. E. Sumner Jr. Seesoft-a
tool for visualizing line oriented software statistics.
IEEE Trans. Software Eng., 18(11):957–968, 1992.

[19] M. Fischer, M. Pinzger, H. Gall. Populating a release
history database from version control and bug track-
ing systems. In Procs. ICSM 2003, pages 23–32. IEEE
Computer Society.

UPGRADE Vol. IX, No. 2, April 2008 35© Novática

Model-Driven Software Development

Keywords: Ecore, Eclipse, Eclipse Modeling Frame-
work (EMF), Eclipse Modeling Project (EMP), Graphical
Modeling Framework (GMF), Model-Driven Architecture
(MDA), Textual Modeling Framework (TMF).

1 Introduction
As stated in its charter, "the importance of supporting

industry standards is critical to the success of the Modeling
project, and to Eclipse in general. The role of the Modeling
project in the support of industry standards is to enable
their creation and maintenance within the Eclipse commu-
nity. Furthermore, as standards bodies such as the Object
Management Group (OMG) have a strong modeling focus,
the Modeling project needs to facilitate communication and
outreach through its PMC and project contributors to fos-
ter a good working relationship with external organiza-
tions." When the OMG introduced MDA to the world in
2001, Eclipse was an incipient community. In the past seven
years, MDA and Eclipse have experienced success while
concurrently undergoing changes in focus, positioning, and
applicability to the world of software development. Eclipse
is no longer "just a Java IDE" while MDA is now based on
a more complete set of specifications, making it much more
well defined than seven years ago.

Although there is little mention of MDA proper within
the Eclipse Modeling Project, it is nonetheless supported to
a large degree, as will be discussed below. In fact, it could
be argued that Eclipse has significantly contributed to the
success and realization of MDA, providing an open source
platform and de facto reference implementations for many
of the MDA specifications. Unfortunately, this has been done
with minimal collaboration with the OMG. It is likely that
improved collaboration will increase the success of both
organizations as they strive toward increasing the adoption
of model-driven development.

2 Implemented Standards
The Eclipse Modeling Project is a top-level Eclipse

project that is logically structured into projects that provide
abstract syntax definition, concrete syntax development,
model-to-model transformation, and model-to-text transfor-

mation. Additionally, the Model Development Tools (MDT)
project [1] is focused on providing implementations of in-
dustry standard metamodels and exemplary tools for devel-
oping models based on those metamodels. This range of
functionality provides its community with a full range of
model-driven software development (MDSD) capabilities,
many of which conform to published MDA specifications.

While the top-level Modeling project is the primary lo-
cation for MDA-related activity at Eclipse, other projects
within Eclipse have modeling-related technology and speci-
fication implementations. For example, the Software Proc-
ess Engineering Model (SPEM) [2] is implemented as part
of the Eclipse Process Framework (EPF) [3] project, while
BPMN diagramming [4] is provided by the SOA Tools
project [5].

It’s also worth pointing out that the Eclipse Modeling
Project provides alternative technologies for several of the
OMG’s MDA specifications. These will be discussed be-

Model-Driven Architecture® at Eclipse

Richard C. Gronback and Ed Merks

The Model-Driven Architecture (MDA®) initiative has come a long way in its seven-year history, as has the Eclipse open
source community. With the top-level Eclipse Modeling Project (EMP) focused in part on working with standards organi-
zations such as the Object Management Group (OMG), much of the promise of MDA is realized today with the software
available to its community. And while much can be done to improve the state of the relationship between the OMG and the
Modeling project, it can be argued that Eclipse leads the way in providing open source specification-compliant solutions,
and is therefore contributing significantly to the overall success of MDA.

Authors

Richard Gronback is chief scientist for modeling products at
Borland Software Corporation. Richard represents Borland on
the Eclipse Board of Directors, co-leads the Modeling project
Project Management Committee (PMC), and is the project lead
for the Graphical Modeling Framework (GMF) project.
Previously, Richard has worked for TogetherSoft, Ariba,
Andersen Consulting, and was a reactor operator in the U.S.
Navy. Richard holds a BSE in Computer Science & Engineering
from the University of Connecticut. <richard.gronback@
borland.com>.

Ed Merks is the project lead of the Eclipse Modeling Framework
project and a co-lead of the top-level Modeling project. He has
many years of in-depth experience in the design and
implementation of languages, frameworks, and application
development environments. He holds a Ph.D. in computing
science and is a co-author of the authoritative "Eclipse Modeling
Framework, A Developer’s Guide" (Addison-Wesley 2003). He
works for IBM Rational Software at the Toronto Lab.
<merks@ca.ibm.com>.

36 UPGRADE Vol. IX, No. 2, April 2008 © Novática

Model-Driven Software Development

low, as they are popular technologies with strong user com-
munities. In most cases, their implementations precede the
corresponding OMG specification. Altogether, these projects
are able to fulfill most of the MDA vision, while certainly
fulfilling general MDSD and domainspecific language
(DSL) tooling requirements. What follows is a list of the
relevant MDA specifications and their implementation sta-
tus within Eclipse. This is not an exhaustive list of MDA
specifications, but those most relevant and within the cur-
rent scope of the Eclipse Modeling Project.

2.1 Meta-Object Facility
The importance of a having common underlying

metamodel cannot be understated and is provided for by
the MOF™ [6] specification. MOF, or more specifically
EMOF (Essential MOF), is closely aligned with the Ecore
metamodel of the Eclipse Modeling Framework (EMF) [7]
and forms the basis of most Modeling project technologies.

The topic of aligning the Ecore metamodel with the
EMOF specification has been ongoing for years, and will
likely continue, as the implications of alignment are non-
trivial. As EMF is such a popular technology used within
many Eclipse projects and commercial products, changes
to its structure and API are not a viable solution. As has
been discussed, updating the EMOF specification to align
with Ecore may be a better solution. Although EMF forms
the bedrock of nearly every Modeling project, there is still
room for improvement. Discussions are ongoing in the ar-
eas of large-scale models, metamodel enhancements, alter-
native persistence mechanisms, and so on. What is impor-
tant to keep in mind when considering the evolution of EMF
and all Eclipse open source projects is that it’s contribu-
tion-based. EMF itself is comprised of a very small team
and has to deal with the maintenance and preservation of its
current client base.

2.2 Unified Modeling Language™
UML® [8] is implemented within the UML2 component

of the Model Development Tools (MDT) project [1] and
currently conforms to the 2.1 version of the specification.
This implementation of the UML2 metamodel is based on
EMF and has been part of Eclipse for quite some time. Dia-
gramming capabilities for the UML2 metamodel implemen-
tation are now provided by the MDT project’s UML2 Tools
component.

These diagrams are generated using the Eclipse Graphi-
cal Modeling Framework (GMF) project, itself an example
of model-driven software development using Eclipse tech-
nologies. Both the metamodel and diagramming components
provide support for the definition of UML Profiles. Pro-
files play an important role in MDA and in the definition of
UML-based DSLs. While no UML Profiles are available at
Eclipse today, it is possible they may be implemented and
provided to the community in the future. Ideally, a catalog
of profiles and other MDA artifacts would be contributed
to and maintained by the community for general consump-
tion.

2.3 Object Constraint Language
OCL [9] is an important element of MDA and is used in

several Modeling projects. OCL is provided as component
of the Model Development Tools project, with a comple-
mentary OCL Tools component coming in the near future.
The OCL implementation conforms to the 2.0 version of
the specification and has bindings to both Ecore and the
UML2 metamodel implementations.

2.4 Diagram Interchange
UML Diagram Interchange (DI) [10] is not currently

provided at Eclipse, but has prompted many questions from
the community regarding its implementation, particularly
with the introduction of UML diagramming from the MDT
project.

This specification was found to be insufficiently pow-
erful by the team that designed and implemented the nota-
tion model for the GMF runtime. It has been suggested that
the DI specification should be revised to align with the GMF
notation model, as there has been no broad adoption of the
original version of the specification, whereas GMF has
grown in popularity.

A related topic is the Diagram Definition RFP [11] that
itself was inspired by the mapping GMF provides between
Ecore models, their notation elements, and their tooling.
This RFP will help bridge a gap that currently exists in
modeling specifications from the OMG.

2.5 XML Metadata Interchange
XMI™ [12] is supported by EMF and is used by the

UML2 project and others. EMF is also able to read serial-
ized EMOF models, in addition to several other format im-
port options, including XML Schema Definition (XSD).

2.6 MOF Query / View / Transformation
QVT [13] is part of the Model-to-Model Transforma-

tion (M2M) project [14] and currently provides an imple-
mentation of the QVT Operational Mapping Language
(OML). The QVT Relations and Core languages are also
being implemented within M2M. The M2M project pro-
vides another model-to-model transformation technology
with its ATL component. ATL (Atlas Transformation Lan-
guage) was a contender among responses to the QVT RFP,
and has fostered a large and successful community of its
own.

2.7 MOF Models to Text Transformation Language
MOF2Text is being implemented within the MOFScript

[15] component of the Generative Modeling Technologies
(GMT) project. This is a recent specification and imple-
mentation in an area where there is no shortage of alterna-
tive technologies. JET [16] originated as EMF’s code gen-
eration framework and borrows heavily from Java Server
Pages (JSP). JET is undergoing an update to enhance its
capabilities, and resides within the Model-to-Text Trans-
formation (M2T) project.

Xpand [17] is an increasingly popular template-based

UPGRADE Vol. IX, No. 2, April 2008 37© Novática

Model-Driven Software Development

M2T component that provides an alternative syntax and
expression language to JET. Xpand provides additional ex-
tension capabilities, and continues to be enhanced via com-
munity contributions.

JET and Xpand are well used within the community,
and while MOF2Text is relatively new and unproven, it is
unlikely that the benefits it may offer will prompt the
reimplementation of existing templates. Nonetheless, a
MOF2Text contribution exists within the Modeling project
for those looking for a specificationcompliant M2T solu-
tion.

2.8 Human-Usable Textual Notation
HUTN [18] is not currently implemented, but relates to

the proposed Textual Modeling Framework (TMF) project
[19] within Modeling. There has been a great deal of inter-
est in tooling for the support of textual concrete syntaxes
for modeling languages, particularly as the interest in DSLs
and "language workbenches" [20] has grown.

The TMF proposal states that it will allow for the defi-
nition of concrete textual syntaxes for abstract syntaxes
defined using EMF. A full-featured textual editor will be
generated, likely targeting the capabilities of the proposed
IDE Meta-tooling Platform (IMP) [21] project. Therefore,
TMF will provide complementary concrete syntax to the
graphical concrete syntax provided by Graphical Modeling
Framework project.

2.9 Business Process Modeling Notation
The SOA Tools Project at Eclipse provides BPMN dia-

gramming, mainly for the purpose of generating BPEL [22].
The diagramming is based on GMF, while the underlying
model is based on EMF, thereby making this project com-
patible with other Modeling technologies.

As BPMN provides no well-defined metamodel, the in-
troduction of the Business Process Definition Metamodel
(BPDM) [23] will hopefully lead to a new contribution of
this capability at Eclipse. As standards-based model imple-
mentations, the implementation of the BPDM metamodel
and BPMN diagramming for working with these models
would fall within the scope of the MDT project.

2.10 Software Process Engineering Metamodel
As mentioned, SPEM [2] is supported by the Eclipse

Process Framework (EPF) project. While SPEM is men-
tioned in the list of MDA specifications, there is no real
requirement for its use in the application of MDA. Within
Eclipse, there is currently no connection between EPF and
the Modeling project, aside from the fact the SPEM
metamodel is implemented using EMF.

3 Working Relationship
To date, very little formal communication has taken place

between the OMG and leadership of the Eclipse Modeling
Project regarding a working relationship. Of late, the most
promising discussions have been with respect to a series of
symposia, to be held first at EclipseCon 2008 [24] and later

in the year during an OMG technical meeting. The focus of
these events will be to discuss individual specification im-
plementations and how the two organizations can strive for
more constructive cooperation. The current situation raises
a number of questions about the nature of the relationship,
which hopefully can be addressed during these meetings. It
may turn out that the relationship should remain very infor-
mal, with no explicit commitment or expectation that im-
plementations found in the Modeling project represent
socalled "reference implementations" of OMG standards,
as described in [25].

In the past, specifications such as the UML have suf-
fered from interoperability issues among vendors who had
different interpretations or implementation goals. The in-
troduction of XMI, well-defined compliance levels, Dia-
gram Interchange specification, etc. were intended to im-
prove the situation, but have largely failed to deliver and
now compound the problem. By developing a reference
implementation in parallel with the specification, ambigui-
ties and defects can be identified earlier and serve the larger
community through delivery of a platform upon which to
implement commercial products.

That said, the UML2 implementation at Eclipse is the
de facto reference implementation for the UML2 specifica-
tion, and its development exemplifies the model we would
like to achieve with the OMG for all implemented stand-
ards within Eclipse. Only through communication and feed-
back between implementers and specification authors can
our respective communities be best served.

3.1 Membership
Currently, the Eclipse Foundation is a member of the

OMG, and the OMG is a member of the Eclipse Founda-
tion. This is a start, but raises a question of what level of
interaction and commitment this brings, particularly as cor-
porate members of each are often involved in, and provide
contributions to, both of these organizations.

What are the best techniques for aligning standards or-
ganization activities with reference implementation project
team activities? Should members be required to participate
in both contribution areas, where applicable? What does it
really mean for the Eclipse Foundation to be a member of
the OMG, and vice versa? What role would the Foundation
representative have within the context of the OMG, and how
would they coordinate with fellow members from the Eclipse
community? What if there are competing goals among mem-
bers? Are there new working models that would be more
productive, and perhaps never before explored in this con-
text?

3.2 Specification Delivery
Specifications with defined metadata should be deliv-

ered in a serialized format, preferably XMI. This is required
by the standard RFP template for new specifications, but
has not been mandated or required for all specifications
currently published by the OMG.

Graphical notations (concrete syntax) are typically pro-

38 UPGRADE Vol. IX, No. 2, April 2008 © Novática

Model-Driven Software Development

vided by drawings and natural language descriptions. While
these are typically sufficient for describing the elements,
they are not as precise as they could be and must be manu-
ally implemented in order to utilize them in modeling tools.

The delivery of specifications in formats that are ma-
chine consumable, particularly if used as inputs to genera-
tive tooling frameworks, should be an obvious benefit to
those involved in specification, implementation, and con-
sumption of these technologies. This includes metamodel
constraints, which should be serialized and interpreted by
the underlying tooling. At present, there is no standard way
for EMF to define constraints (e.g. OCL), nor interpret con-
straints on models even if they were provided.

The UML specification contains domain (abstract) syn-
tax and semantics, OCL constraints, and graphical (concrete)
syntax, accompanied by natural language description and
mapping to the domain. It would seem reasonable for speci-
fications to be delivered in a manner where the abstract
model is described separately from the concrete syntax, and
where they are only related using a mapping definition. This
approach will provide proper separation of concerns, and
allow for the generation of graphical editors for various
domain models.

As mentioned previously, the RFP for Diagram Defini-
tion should address the issue, which leaves us with graphi-
cal notation definition issue. Should graphical notations be
defined in terms of a graphical definition metamodel, SVG,
or another standard? With respect to mapping definitions,
for example the myriad of mappings from UML2 Profiles
to IMM (among others), should QVT be provided as part of
these specifications?

3.3 Specification Compliance
There are generally provided a set of conformance cri-

teria to be met when implementing a specification. With
improved collaboration between implementation and speci-
fication organizations, it can be expected that some level of
minimum compliance level be achieved, so as to provide a
proper reference implementation. There are cases today
where implementations at Eclipse are well aligned, or nearly
aligned with OMG specifications. For example, the Eclipse
UML2 project provides a compliant implementation of the
UML 2.1 metamodel using the nearly EMOF-compliant
Eclipse EMF project.

Should implementations be required to provide the high-
est level of compliance to defined specification acceptance
criteria? Or, is a "best effort" approach adequate? What ac-
tions can or should be taken to provide specification align-
ment and/or conformance?

3.4 Implementations Influencing Specifications
As indicated previously, there are cases where existing

implementations are close to a specification, yet not fully
compliant. In the case where there is a large existing client
base on a high quality, open source, implementation, why
not align a specification with the implementation? For ex-
ample, the previously mentioned case of EMF’s Ecore model

being not quite aligned with the EMOF specification.
There is a precedent for this type of influence between

an open source implementation and OMG specification in
the UML. The Diagram Interchange and Diagram Defini-
tion RFP are two more areas where this type of cooperation
can be mutually beneficial. It is most often the case where
specifications are themselves driven from implementations,
although typically from a commercial vendor. Wouldn’t an
open source approach to implementations influencing speci-
fications be a more equitable solution? This leads us di-
rectly to the next topic.

3.5 Open and Transparent Nature
In the case of Eclipse, contributions are done in the open,

with an emphasis on meritocracy as the basis for achieving
more responsibility within the community. Transparency is
essential to the open source process at Eclipse, yet is some-
what different from the specification development process
at the OMG [26]. Perhaps this is an area where the two
organizations can influence one another?

If the development of a reference implementation were
to be done in the open, it would follow that the developing
version of the specification itself must be available. Other-
wise, there would need to be a serial process of first devel-
oping the specification, publishing, and then implementing
it, which eliminates the benefits of validating the specifica-
tion while developing an implementation in parallel.

Can the process of developing standards be done in a
more open and transparent manner, with an emphasis on
addressing the needs of a developing reference implemen-
tation? Alternatively, could Eclipse support a model where
source is not open until it reaches a required level of align-
ment with ongoing specification work?

4 Conclusion and Future Outlook
In summary, the promise of MDA can be realized to a

large extent today using the capabilities provided by the
Eclipse Modeling Project. As MDA encompasses a collec-
tion of specifications that align well with the implementa-
tion goals of the Eclipse Modeling Project, it seems the fu-
ture of delivering a solid open source infrastructure for MDA
tooling is bright. Practically speaking, there are many chal-
lenges remaining before the statement in the Modeling
project’s charter related to its relationship with standards
bodies such as the OMG can be realized. A relationship that
is too informal will be unlikely to yield the desired results,
while a relationship that is strictly defined and enforced will
likely limit the progress of implementation. The right bal-
ance will clearly benefit both of these organizations, their
members, and ultimately the customers of commercial prod-
ucts that are standards-based.

References
[1] Eclipse Model Development Tools (MDT) Project.

<http://www.eclipse.org/mdt>.
[2] Software Process Engineering Metamodel (SPEM)

specification. <http://www.omg.org/technology/docu-

UPGRADE Vol. IX, No. 2, April 2008 39© Novática

Model-Driven Software Development

ments/modeling_spec_catalog.htm#SPEM>.
[3] Eclipse Process Framework (EPF). <http://www.

eclipse.org/epf/>.
[4] Business Process Modeling Notation (BPMN) speci-

fication. <http://www.omg.org/technology/documents/
bms_spec_catalog.htm#BPMN>.

[5] Eclipse SOA Tools Project (STP). <http://www.
eclipse.org/stp>.

[6] Meta-Object Facility (MOF™) specification. <http://
www.omg.org/technology/documents/modeling_
spec_catalog.htm#MOF>.

[7] Eclipse Modeling Framework (EMF) Project. <http://
www.eclipse.org/emf>.

[8] Unified Modeling Language™ (UML®) specifica-
tion. <http://www.omg.org/technology/documents/
modeling_spec_catalog.htm#UML>.

 [9] Object Constraint Language (OCL) specification.
<http://www.omg.org/technology/documents/
modeling_spec_catalog.htm#OCL>.

[10] UML Diagram Interchange (DI) specification. <http:/
/www.omg.org/technology/documents/modeling_
spec_catalog.htm#UML_DI>.

[11] Diagram Definition RFP. <http://www.omg.org/
techprocess/meetings/schedule/Diagram_Definition_
RFP.html#RFP_Issued>.

[12] XML Metadata Interchange (XMI) specification.
<http://www.omg.org/technology/documents/
modeling_ spec_catalog.htm#XMI>.

[13] MOF™ Query / View / Transformation (QVT) speci-
fication. <http://www.omg.org/technology/documents/
modeling_spec_catalog.htm#MOF_QVT>.

[14] Eclipse Model-to-Model Transformation (M2M)
Project. <http://www.eclipse.org/proposals/m2m>.

[15] MOFScript component. <http://www.eclipse.org/gmt/
mofscript/>.

[16] Java Emitter Templates (JET). <http://www.eclipse.org/
modeling/m2t/?project=jet>.

[17] Xpand template engine. <http://www.eclipse.org/
modeling/m2t/?project=xpand>.

[18] UML Human-Usable Textual Notation (HUTN) speci-
fication. <http://www.omg.org/technology/documents/
modeling_spec_catalog.htm#HUTN>.

[19] Textual Modeling Framework (TMF) Proposal. <http:/
/www.eclipse.org/proposals/tmf>.

[20] Language Workbenches. <http://martinfowler.com/ar-
ticles/languageWorkbench.html>.

[21] IDE Meta-tooling Platform (IMP) Proposal. <http://
www.eclipse.rog/proposals/imp>.

[22] Business Process Execution Language. <http://
docs.oasis-open.org/wsbpel/2.0/wsbpelv2.0.html>.

[23] Business Modeling Definition Metamodel (BPDM).
<http://doc.omg.org/dtc/2007-07-01>.

[24] EclipseCon 2008 <http://www.eclipsecon.org/2008>.
[25] OMG Specification and Products <http://www.omg.

org/gettingstarted/specsandprods.htm#SpecProd>.
[26] OMG Technology Adoption Process. <http://www.

omg.org/gettingstarted/processintro.htm>.

Other Useful References
Object Management Group (OMG). <http://www.omg.org>.
Eclipse Modeling Project (EMP). <http://www.eclipse.org/
modeling>.
Eclipse UML2 Project. <http://www.eclipse.org/uml2>.
EMF Technology OCL Project. <http://www.eclipse.org/
emft/projects/ocl#ocl>.
Eclipse Graphical Modeling Framework (GMF) Project.
<http://www.eclipse.org/gmf>.
Model to Text Transformation (M2T) Project. <http://
www.eclipse.org/modeling/m2t/>.
Architecture-Driven Modernization (ADM). <http://
adm.omg.org/>.
Business Process Definition Metamodel. <http://doc.omg.
org/dtc/2007-07-01>.
Catalog of OMG Domain Specifications. <http://
www.omg.org/technology/documents/domain_spec_
catalog.htm>.

40 UPGRADE Vol. IX, No. 2, April 2008 © Novática

Model-Driven Software Development

Keywords: CASE Tools, Interoperability, Metamodels,
Model Driven Architecture (MDA), Model Driven Devel-
opment (MDD), Model Transformations, Web Engineering.

1 Introduction
Since 2001 the Model-Driven Architecture (MDA) ini-

tiative has been applied to many application domains show-
ing that, in general, it works better in those domains domi-
nated by functional requirements, with well structured mod-
els, precise separation of concerns and standard platforms.
Web Engineering, specifically, has proved to be an applica-
tion domain where MDA has brought significant benefits.
In particular, MDA allows successfully addressing
interoperability, model evolution and adaptation problems
of Web systems, as emerging new platforms and changes in
technologies constantly happen in this area.

In this sense, we have seen how many Web Engineering
approaches are shifting to becoming "MDA compliant",
which has resulted in some major changes in their nota-
tions, processes and tools. In particular, some of these ap-
proaches have had to: (a) redesign their Web modelling lan-
guages using meta-modelling techniques, rather focusing
on notational aspects of the languages being used; (b) reor-
ganize their original set of models in a modular and plat-
form independent manner; (c) reformulate their develop-
ment processes in terms of model transformations and model
merges; and (d) incorporate and adopt standards that sup-
port the realization of the MDA initiative such as UML®
(Unified Modelling Language), MOF (Meta-Object Facil-
ity), XMI (XML Metadata Interchange), or QVT (Query/
View/Transformations)1 .

However, despite all these challenges, the benefits of
the adoption of Model-Driven Development (MDD) and
MDA ideas and techniques, to Web Engineering has far
outweighed its costs. MDA has provided the opportunity to
inject good software engineering practices into the Web
applications domain; and has allowed successful bridging

Model-Driven Web Engineering
Nora Koch, Santiago Meliá-Beigbeder, Nathalie Moreno-Vergara, Vicente Pelechano-Ferragud,

Fernando Sánchez-Figueroa, and Juan-Manuel Vara-Mesa

The continuing emergence of new platforms and technologies make Web applications resemble more and more complex
desktop applications. Therefore, the tasks of designing, implementing and adapting the Web applications are becoming a
more time-consuming and error-prone issue. In the Web Engineering context, Model-Driven Development (MDD) and
Model-Driven Architecture (MDA) principles are being used to successfully address the construction, evolution and adap-
tation of Web applications. In this article we show how the Model-Driven Web Engineering (MDWE) discipline has arisen
and how MDD/MDA principles are applied in the Web Domain to define models and metamodels, to specify model trans-
formations, to manage interoperability issues and to build tools that support the development process.

Authors

Nora Koch has been a research assistant at the Ludwig-
Maximilians-Universität (LMU) of Munich (Germany) since
1995 and has worked at F.A.S.T. Applied Software Technology
GmbH as consultant and project manager since 1998. She
received her Ph.D. in Computer Science from the LMU in 2000.
Nora is leader of the Web Engineering Group at the LMU,
responsible for the development of the UWE methodology. Her
main research interests focus on methods for the development
of Web applications, personalised Web systems and model-driven
engineering. Nora organised the 4th International Conference
on Web Engineering (ICWE 2004) in Munich, two editions of
the Model-Driven Web Engineering Workshop (MDWE 2005
and MDWE 2007) and is a founder of the network MDWEnet.
She is a member of the IEEE and the German Society of
Informatics. Nora has published more than 70 publications.
<kochn@pst.ifi.lmu.de>.

Santiago Meliá-Beigbeder is Assistant Professor at the
Department of Languages and Information Systems at the
University of Alicante (Spain), where he is the director of a
postgraduate Master in Software Engineering. Also, he is a
member of the IWAD research group in the same University.
His research interest includes Model-Driven Development, Web
Engineering Methodologies, Automatic Code Generation
Techniques and Web Software Architecture, all of which were
part of his Ph.D. received at the University of Alicante in 2007.
He has published in prestigious journals such as the European
Journal of Information Systems, Journal of Web Engineering,
Revue d’Interaction Homme-Machine and Lecture Notes in
Computer Science, and at conferences (OOPSLA, EC-MDA,
ER, EC-Web, ICWE, CADUI, etc.). He regularly serves on the
Program Committees of several international conferences and
workshops. <santi@dlsi.ua.es>.

Nathalie Moreno-Vergara is Assistant Professor in the
Department of Computer Science of the University of Málaga
(Spain) where she received her MSc. and is completing a Ph.D.
in Computer Science. Her research interest is mainly oriented
towards model-driven development and, in particular, she is
interested in investigating conceptual modeling methodologies,
business process modeling, model transformation languages and
code-generation techniques in the Web applications context. Her1 OMG. <http://www.omg.org>

UPGRADE Vol. IX, No. 2, April 2008 41© Novática

Model-Driven Software Development

most significant publications can be found in relevant journals
(the European Journal of Information Systems, the Journal of
the American Society for Information Science and Technology
or the ET Software), book chapters in Springer Verlag and well-
known international conferences such as ICWE, DEXA,
MODELs, ICSE, etc. She usually participates as part of program
committees and reviewer of conferences and workshops in her
research area. <vergara@lcc.uma.es>.

Vicente Pelechado-Ferragud is Associate Professor in the
Department of Information Systems and Computation (DISC)
at the Valencia University of Technology (Spain). His research
interests are web engineering, conceptual modelling,
requirements engineering, software patterns, web services,
ambient intelligence, business process modeling and model
driven development. He received his Ph.D. from the Valencia
University of Technology in 2001. He is currently teaching soft-
ware engineering, design and implementation of web services,
design patterns, and model driven development and code
generation in the Valencia University of Technology. He is a
member of the OO-Method Research Group at the DISC. He
has published in several well-known scientific journals
(Information Systems, Data & Knowledge Engineering,
Information and Software Technology, Internacional Journal of
Web Engineering and Technology, etc.), book chapters in
Springer, IDEA, M. Sharpe and international conferences (ER,
CAiSE, WWW, ICWE, EC-WEB, WISE, AH, ICSOC, DEXA,
etc.). He has been a member of Scientific and Organizing
Committees of well-known International Conferences and
Workshops (CAiSE, ER, ICWE, ICEIS, ACM MT and IADIS).
<pele@dsic.upv.es>.

Fernando Sánchez-Figueroa is a professor in the Department
of Computer Science at University of Extremadura (Spain),
where he teaches Concurrent Programming and Design Patterns.
Sánchez has a MSc. in computer science from the University of
Sevilla (Spain) and a Ph.D. in computer science from the
University of Extremadura. His research focuses on Web
Engineering, specifically on Rich Internet Applications, Web
Acessibility and Model Driven Web Engineering. He has been
Vice-rector of ICT at the University of Extremadura for four
years. Currently he holds a “Software Engineering” chair
sponsored by INSA-IBM. < fernando@unex.es>.

Juan-Manuel Vara-Mesa obtained his BSc. and MSc. in
Computer Science Engineering at the Universidad Rey Juan
Carlos (Madrid, Spain), where he did the Doctoral Courses on
the Computer Science and Mathematical Modeling Program.
Currently he works as assistant professor in the department of
Informatics Languages and Systems II of the Universidad Rey
Juan Carlos and he is a member of the Kybele Research Group
where he is doing his Ph.D. thesis focused on Model-Driven
Engineering for the development of Web Information Systems.
He is co-author of several books and book chapters, as well as
several publications at national and international events and
journals, and he has participated on several regional, national
and European research projects. <juanmanuel.vara@urjc.es>.

of the previously existing gap between the high level de-
sign models and concepts and the low-level Web imple-
mentation code (Preciado et al [1]). This has led to a disci-
pline within the Web Engineering called Model-Driven Web-
Engineering (MDWE) that focuses, among others, on the
interoperability of the currently existing methodologies for
the development of Web applications. Worthy of mention is
the MDWEnet2 initiative started by a group of European
researchers working on MDWE, with the objective of im-
proving the interoperability of MDWE approaches and tools
in order to widen their scope and provide better tools and
methods to the industry.

The adoption of MDD/MDA by the Web Engineering
community is not free from problems and limitations. In
this article, we shall give a critical overview of the state of
the art in MDA-based Web Engineering as currently per-
ceived by some of the groups that actively work on it. Not
only the efforts and results already achieved will be de-
scribed, but also the challenges, threats and weaknesses of
this approach will be identified based on our experiences
and developed systems, with the aim of helping MDA to
evolve towards a more mature and successful development
approach for Web systems.

The paper is structured as follows. Section 2 describes
the role achieved by models and meta-models in the ab-
straction and design process of current Web applications as
a consequence of the MDA goal of automatically generat-
ing implementations from models. In this context, Section
3 illustrates the way in which model transformations are
used within the development process. A brief report on tools
that support MDD/MDA principles in the Web domain is
given in Section 4. Section 5 shows how the Web Engineer-
ing community has addressed the difficult problems of
interoperability using the MDA concepts and mechanisms.
Finally, Section 6 points out current strengths, weaknesses
and major challenges that could considerably improve the
efficiency of using MDA in the Web context.

2 Models and Metamodels in the Web Domain
MDA is based on the construction and transformation

of models which represent a computational independent
viewpoint (CIM), a platform independent viewpoint (PIM)
or a platform specific viewpoint (PSM). During recent years,
the Web engineering community has proposed several meth-
ods for modelling Web applications that mainly focus on
the construction of PIMs. Web Engineering methods, Rossi
et al. [2] like Hera, OOHDM, OOWS, UWE, WebML,
WSDM, and methods such as MIDAS [3], OO-H and
WebSA (for both see Meliá et al [4]) propose building simi-
lar types of models but using different graphical notation
for the representation of these models. Most of them use a
proprietary notation; some combine the use of the Unified
Modeling Language (UML) with their own notation, and

only UWE and WebSA use UML 2.0 for all its models. UWE
uses plain UML as far as possible and defines for the Web
domain features a UML profile following the extension
mechanisms provided by UML. As a result, UWE is a UML2 MDWEnet. <http://www.pst.ifi.lmu.de/projekte/mdwenet/>.

42 UPGRADE Vol. IX, No. 2, April 2008 © Novática

Model-Driven Software Development

compliant Web domain specific language. There is a clear
tendency to the use of UML by other methods as well, mainly
due to the advantages provided in the use of CASE tools
and meta-modelling for model-driven approaches.

A main characteristic shared by all these Web engineer-
ing approaches is the separation of concerns. This charac-
teristic allows building different models to address a vari-
ety of concerns relevant in the Web domain like content of
the Web application, hypertext structure, presentation as-
pects, adaptivity (in particular personalisation and context-
awareness) and Web architectural issues. Models are merged
based on integration mechanisms either implemented in
proprietary tools or by the application of general rules de-
fined in model transformation languages. In addition,
MDWE approaches follow the MDA principles creating
CIMs such as the requirements models built by WebRE [5]
and OOWS; building PIMs for navigation, presentation and
business process specification (almost all methods); build-
ing PIMs for architectural models (WEI and WebSA); and
obtaining PSMs or transforming into code for specific plat-
forms such as Java EE, Struts, Spring and .NET. The gen-
eral objective is that in the development process the crea-
tion of models that take into account technological aspects
is postponed as long as possible. The main advantage is to
be able to react efficiently and with low costs to technology
changes.

The entities used in all these Web specific models, and
the relationships between entities can be also represented
as a model, a so-called metamodel, which is needed for the
specification of the model transformations. The first
metamodel in the Web domain was presented for the UWE
approach at the 3rd International Conference on Web Engi-
neering (ICWE 2003) [6]; other methods defined then their
metamodel; recently Moreno and Vallecillo [7] proposed a
common reference metamodel called Web Engineering
Interoperability (WEI), which is described as a MOF
metamodel. WEI also defines lightweight extensions of
UML, i.e., UML profiles, for representing the specific syn-
tax for each of its metamodels.

3 Model Transformations for Generating Web Ap-
plications

As the MDA framework suggests, the transformations
could be applied to establish a traceable development proc-
ess from abstract models (CIM or PIM) to the platform de-
pendent models (PSM) or directly to the implementation.
Thus, many Web engineering approaches have defined trans-
formations to obtain some parts or the entire implementa-
tion of a Web application. As it is well known, a domain-
specific strategy such as the Web domain, allows signifi-
cant parts of the implementation to be generated automati-
cally and to reduce the development effort [8]. Several Web
methods have taken advantage of this aspect by developing
commercial CASE tools as presented in the next section.
These CASE tools use code generation techniques to ob-
tain Web applications from a reduced set of conceptual or
design models. Within the model transformations scope we

can distinguish between model-to-model transformations
and model-to-code transformations. Currently, most Web
methods are starting to use model transformations to ex-
tend or to implement CASE tools in order to take advan-
tage of the opportunities which transformation languages
can provide.

Next, we present how the different Web methods have
applied model-to-model and model-to-text transformations
to produce Web applications.

3.1 Model-to-Model Transformations
There are two types of model-to-model transformations:

(1) vertical transformations that convert models from higher
into lower level of abstraction and (2) horizontal transfor-
mations which describe mappings between models of the
same level of abstraction.

Historically, in the Web domain, most cases of vertical
transformations have been developed using using tool-spe-
cific proprietary languages. More recently though, Web
approaches such as UWE [9], OOWS [10], WebSA [4] and
MIDAS [3] have formalized all or part of their develop-
ment process using model-to-model transformations lan-
guages such as QVT, ATL or AGG. In some cases, these
model-to-model transformations are defined as merge
mechanisms to introduce new concepts like architectural
styles (WebSA), user requirements (WebRE [5] and OOWS
Requirements Analysis [10]) and quality measures [11]. In
other cases, they have been established to formalize the
mappings from the original process (UWE [12]).

The horizontal transformations have been applied in the
Web domain to maintain the consistency of the model speci-
fications, checking that the different models do not impose
contradictory requirements on the elements they share [7].
However, due to the novelty of these models, there is a lack
of maturity in their current standards and tools. Therefore,
some of the properties of these transformations (reusabil-
ity, easy of use and a reduced maintainability) have not been
tackled yet. Furthermore, there is no Web Engineering com-
mercial CASE tool available that is completely based on
model-to-model transformations.

3.2 Model-to-Code Transformations
The Web engineering community has extensive experi-

ence in model-to-text transformations or code generation.
Approaches such as WebML, OOH, OO-Method/OOWS
have been generating Web applications for almost ten years
now. In some cases, code generation is realized using gen-
eral-purpose languages (C++, XSLT, Java or Python) which
do not cover some desirable requirements for the model-to-
text transformations. Recently, an OMG standard Model-
to-Text Request-For-Proposal has established the proper
characteristics of the model-to-text languages (e.g. Round-
Trip engineering) and some proposals such as Xpand and
MOFScript have been adapted to it with mixed success.
Recently, OOWS and WebSA have used MOFScript and
Xpand in the implementation of their code generators in
order to benefit from its properties.

UPGRADE Vol. IX, No. 2, April 2008 43© Novática

Model-Driven Software Development

4 CASE Tools supporting MDWE
In this section we give a brief overview of the existing

CASE tools supporting MDWE proposals and we make a
short review of the main problems and challenges to be tack-
led in this field. First of all, it should be noticed that we
make a distinction between UML based and non-UML based
tools.

On the one hand, we consider those CASE tools devel-
oped to work with domain specific languages that extend
the UML standard (UML profiles). The most relevant CASE
tool that falls in this category is ArgoUWE [13]. Initially,
ArgoUWE was developed to extend the open-source tool
ArgoUML by adding features for modelling content, navi-
gation, and presentation structures. Later on, features were
added to model the business logic and the behaviour of
workflow-driven Web applications and to detect inconsist-
encies in UWE models based on the UWE metamodel and
its OCL well-formed rules [13]. Currently the main prob-
lem of this approach is that ArgoUML and therefore
ArgoUWE does not support UML 2.0. WebTE [14] is a UML
tool that supports XMI and allows introduction of the OO-
H and WebSA models and transformations into a transfor-
mation engine which executes them and produces a Java
EE Web application. Currently there exists other solutions
based on the use of UML, like the AriadneTool [15], the
DaVinci framework [16], MIDAS-CASE [17] or
VisualWade [18], but they either offer just some limited
functionalities or have been closed.

On the other hand, we consider those tools developed to
work with languages for Web applications modelling and
deployment defined by means of MOF-based metamodels.
The tools in this group may be considered not fully "MDA
conformant", in the sense that they are not UML-based tools.
Currently the most representative of these is WebRatio [19].
WebRatio is a commercial tool developed for giving sup-
port to the WebML method that is focused on the develop-
ment of data-intensive applications. With WebRatio, the
business objects are modelled using the UML or E/R stand-
ards while the front-end is modelled using WebML. Then,
the entire application for the Java EE architectures and SQL/
XML data sources is automatically generated from those
models. There are also more recent non-UML CASE tools,
like M2DAT [3] or the OOWS Suite [20], but they are still
under development.

When talking about CASE tool support it should be noted
that the proliferation of technologies and tools for develop-
ing "your own" MDD tools is facilitating the adoption and
implementation of MDA principles and techniques. Many
software companies and research groups are considering
the development of their own CASE tool for supporting
their own MDWE method (following the MDA, Software
Factories, Product Lines, Generative Programming of what-
ever other more specific model driven proposal). This way,
technology is playing a key role in the distinction between
UML based and non-UML based tools: the facilities pro-
vided in the context of the Eclipse Modelling Project (EMP)
and other DSL frameworks, like the Generic Modelling

Environment (GME) or the DSL Tools, have shifted the fo-
cus from UML-based approaches to MOF-based ones.

Special attention has to be paid to the EMP. The quan-
tity and quality of the MDD facilities provided in the con-
text of this project (a common modelling framework like
EMF, meta-editors like GMF, transformation engines like
ATL or VIATRA, code generators like MOFScript) has given
rise to a new generation of Eclipse tools. As a consequence,
more and more MDWE proposals are developing their tools
as Eclipse plug-ins, like the OOWS suite and M2DAT, or at
least, upgrading or re-defining them to be "Eclipse compli-
ant", like WebRatio [21].

However, there is still a lot of work to do. A very com-
mon problem, clearly stated by Moreno and Vallecillo [2],
is that the mapping rules are typically hard-coded in the
CASE tool (e.g. this is the case of ArgoUWE and WebRatio).
This fact results in a gap between the design of the Web
application and the final implementation. According to MDA
principles, these rules should be defined at a more abstract
level, using the QVT standard. Although some proposals
have already tackled this task (see [13] for UWE, [4] for
WebSA and [7] for WEI), these improvements have still to
be integrated in the corresponding CASE tools. The lack of
a reference implementation for QVT (which has led to non-
complete QVT parsers for a subset of this language [7])
complicates this integration. Another problem is
interoperability, in this sense, the use of weaving models to
automate model migration is becoming widely accepted.
Vara et al [22] shows how to apply this approach in a real
industrial environment. Such an approach is being studied
as a way to automate tools interoperability. Finally, the reader
should notice that even though MDD is a widely accepted
approach, MDWE is still relatively new: all the tools listed
in this section are academic proposals. So, we can conclude
that the most outstanding challenge for the developers of
MDWE CASE tools is to take their tools from academic to
industrial environments.

5 Interoperability Issues in MDWE
As stated in previous sections, current model MDWE

approaches provide a set of methods and supporting tools
for a systematic design and development of Web applica-
tions. However, these proposals have some limitations, es-
pecially for exchanging models or representing further
modelling concerns, such as architectural styles, technol-
ogy independence, or distribution. A possible solution to
these issues is providing interoperability among MDWE
proposals, enabling them to complement each other.
Interoperability is at the heart of MDA at different levels:
models and metamodels, transformations and tools.

Regarding models and metamodels, there exist three
possibilities for achieving this interoperability: a) obtain-
ing a unified method based on the strengths of the different
methods; b) obtaining bridges for interoperability between
the individual models and tools and c) obtaining a common
metamodel. All these possibilities have their own benefits
and disadvantages. Currently there are two projects in

44 UPGRADE Vol. IX, No. 2, April 2008 © Novática

Model-Driven Software Development

progress regarding options b) and c). In [23] Wimmer et al.,
presented a methodology based on MDA for making
interoperable three Web modelling approaches (WebML,
OO-H and UWE). They used the Ecore implementation of
the MOF standard for the definition of the three metamodels.
ATL is used as model transformation language to imple-
ment the transformation rules and an ATL engine executes
the transformation. The next step for them is defining a com-
mon metamodel for Web Modeling. Another promising ap-
proach is WEI [7], a model-based framework for building
Web applications that, among other goals, tries to provide a
common framework (and metamodel) in which current pro-
posals could be integrated and formulated in terms of the
MDA principles. WEI can be instantiated both to build Web
applications from scratch, and to build Web applications
based on existing models (including those defined using
other methodologies, e.g., UWE, WebML or OO-H).

Regarding transformations, we find a problem due to
each approach using its own script language that is incom-
patible with other languages and tools that users often use.
In this sense, QVT is not being used as thought by the OMG
as stated in the previous section.

Regarding tools interoperability, despite the efforts of
the OMG, the XMI standard has proven to be unsuccessful,
especially when working with UML profiles. Until that hap-
pens it seems more convenient to take advantage of model-
to-model transformations to achieve CASE tools
interoperability, whether or not they are UML based tools.

6 Future Challenges
MDWE methods are evolving to be properly adapted to

the continuous evolution of Web system requirements and
technology. In the last few years a new type of Web appli-
cations, known as Web 2.0 has emerged. These applications
let people collaborate and share information online.
Murugesan [2] says the People-Centric Web and the Read/
Write Web, offers smart user interfaces and built-in facili-
ties for users to generate and edit content presented on the
Web and thereby enrich the content base.

 Service Oriented applications and the Web 2.0 are pro-
viding a clear infrastructure to integrate multiple software
services under a rich user interface. AJAX-based (Asyn-
chronous Javascript and XML) Rich Client Applications or
RIAs, Service Mashups, REST or XML Web Services al-
low integrating current Web applications with third party
services, portals, and with legacy systems. RIAs are chang-
ing the browser from a static request-response interface to
a dynamic, asynchronous interface. RIAs promise a richer
user experience and a set of benefits that affect Web Engi-
neering methods [24].

The wide adoption of mobile devices allows users to
access the Web using handheld devices (pocket PCs, PDAs,
smartphones, etc). Mobile Web applications offer some ad-
ditional features compared to traditional desktop Web apps
such as location-aware services, context-aware capabilities
and personalization. We are not forgetting that Web appli-
cations development is a complex task that also needs to

take into account many different aspects and non functional
requirements such as scalability, reliability, availability,
evolution and maintainability, usability, security, accessi-
bility, mobility, localization, personalization, adaptivity, etc.

Web Usability is one of the most relevant quality fac-
tors that should be taken into account by current and future
model driven Web engineering methods. Usability should
be integrated in each step of the software development
method in a mandatory way, because generated Web apps
should meet the diverse expectations and needs of many
types of users, including able and disabled users, with dif-
ferent skills. The continuing appearance of new technolo-
gies like RIAs and the Mobile Devices does not guarantee
that current design guidelines and usability tests will work
for those new approaches to assure a better user experi-
ence.

However, MDA is still a relatively young approach and
there are some issues around the MDA-based software de-
velopment not yet sufficiently clarified. In particular, MDA
is originally intended for new developments and it is not
clear how MDA handles the production of releases, patches
or updates, an important part of the ongoing maintenance
of Web applications. Regarding non-functional require-
ments, MDA deals well with functional properties but it is
less capable of dealing with non-functional requirements.
In this sense, there is a debate about whether the specifica-
tion of non-functional requirements is within the scope of
MDA. In summary, while the principles underlying MDA
are sound, there remain issues that must be solved for MDA
to realize its full potential, particularly in the Web applica-
tions domain.

References
[1] H.W. Gellersen, M. Gaedke. Object-Oriented Web Ap-

plication Development. IEEE Internet Computing,
1999. Vol 3(1), pp. 60-68.

[2] G. Rossi, O. Pastor, D. Schwabe, L. Olsina (eds.). Web
Engineering: Modelling and Implementing Web Ap-
plications. Springer Human-Computer Interaction Se-
ries, 2007. ISBN: 978-1-84628-922-4.

[3] P. Cáceres, V. De Castro, J.M. Vara, E. Marcos. Model
Transformations for Hypertext Modelling on Web In-
formation Systems. Proc. of the ACM/SAC 2006 Track
on Model Transformations (MT2006), Dijon, France,
2006, pp. 1256–1261.

[4] S. Meliá, J. Gómez. The WebSA Approach: Applying
Model-Driven Engineering To Web Applications. Jour-
nal of Web Engineering (JWE), 5(2), 2006, pp. 121–
149.

[5] M.J. Escalona, N. Koch. Metamodelling the Require-
ments of Web Systems. Web Information Systems and
Technologies: Int. Conferences WEBIST 2005 and
WEBIST 2006. Revised Selected Papers, Springer
LNBIP, Vol. 1, 2007, pp. 267-280.

[6] N. Koch, A. Kraus. Towards a Common Metamodel
for the Development of Web Applications. Proc. 3rd
Int. Conf. Web Engineering (ICWE 2003), LNCS 2722,

UPGRADE Vol. IX, No. 2, April 2008 45© Novática

Model-Driven Software Development

497-506. Springer Verlag, 2003.
[7] N. Moreno, A. Vallecillo. Towards Interoperable Web

Engineering Methods. Accepted for publication at the
Journal of the American Society for Information Sci-
ence and Technology (JASIST), 2008.

[8] J. Bettin. Measuring the Potential of Domain-Specific
Modeling Techniques. Proc. of the Second Domain-
Specific Modeling Languages Workshop, OOPSLA,
Working Papers W-334. Helsinki School of Econom-
ics, 2002 , pp. 39-44.

[9] N. Koch. Transformation Techniques in the Model-
Driven Development Process of UWE. Proc. of the 6th
Int. Conf. on Web Engineering (ICWE 2006), ACM
Vol. 155, Palo Alto, California, 2006.

[10] P. Valderas, V. Pelechano, O. Pastor. A Transforma-
tional Approach to Produce Web Application Proto-
types from a Web Requirements Model. International
Journal of Web Engineering and Technology (IJWET),
Vol. 3, No. 1, 2007, pp. 4-42.

[11] C. Cachero, S. Melia, M. Genero, G. Poels, C. Calero.
Towards Improving the Navigability of Web Applica-
tions: A Model-Driven Approach. European Journal of
Information Systems, 2007, Vol. 16, pp. 420-447.

[12] A. Kraus. Model Driven Software Engineering for Web
Applications. PhD Thesis, Institut für Informatik,
Ludwig-Maximilians-Universität München, 2007.

[13] A. Knapp, N. Koch, G. Zhang, H.-M. Hassler. Modeling
Business Processes in Web Applications with
ArgoUWE. Proc of Int. Conf. Unified Modeling Lan-
guage (UML 2004), Springer LNCS 3273, 2004, pp.
69-83.

[14] S. Meliá, J. Gómez, J.L. Serrano. WebTE: MDA Trans-
formation Engine for Web Applications. Proc. 7th Int.
Conf. Web Engineering (ICWE 2007), Springer LCNS
4607, Como, Italy, 2007.

[15] P. Diaz, S. Montero, I. Aedo. Modelling Hypermedia
and Web Applications: the Ariadne Development
Method. Information Systems, Vol.30(8), 2005, pp.
649-673.

[16] A. Langegger, J. Palkoska, R. Wagner. DaVinci - A
Model-driven Web Engineering Framework. J. Web.
Infor. Syst Vol.2(2), 2006 pp. 119-132.

[17] J.M. Vara, V. De Castro, E. Marcos. WSDL Automatic
Generation from UML Models in a MDA Framework.
International Journal of Web Services Practices, Vol.1,
No.1-2, 2005, pp. 1-12.

[18] J. Gómez, A. Bia, A. Parraga. Tool Support for Model-
Driven Development of Web Applications. Web Infor-
mation Systems Engineering (WISE 2005), pp. 721-
730.

[19] Webratio. <http://www.webratio.com>.
[20] J. Fons, V. Pelechano, O. Pastor, P. Valderas, V. Torres.

Applying the OOWS Model-Driven Approach for
Developing Web Applications. The Internet Movie Da-
tabase Case Study.

[21] R. Acerbis, A. Bongio, M. Brambilla, S. Butti.
WebRatio 5: An Eclipse-Based CASE Tool for Engi-

neering Web Applications. Web Engineering, 2007,
pp. 501-505.

[22] J.M. Vara, M. Didonet Del Fabro, F. Joualt, J. Bezivin.
Model Weaving Support for Migrating Software Arti-
facts from AUTOSAR 2.0 to AUTOSAR 2.1.Int. Conf.
on Embedded Real Time Software (ERTS 2008),
Toulose (France), 2008.

[23] M. Wimmer, A. Schauerhuber, W. Schwinger, H. Kargl.
On the Integration of Web Modeling Languages: Pre-
liminary Results and Future Challenges. Workshop on
Model-driven Web Engineering (MDWE 2007), held
in conjunction with ICWE, Como, Italy, 2007.

[24] J.C. Preciado, M. Linaje, F. Sánchez. Designing Rich
Internet Applications with engineering methodologies.
Proc. of the 9th IEEE Int. Symposium on Web Site
Evolution. IEEE Computer Society, 2007, pp. 23-30.

46 UPGRADE Vol. IX, No. 2, April 2008 © CEPIS

UPENET

Keywords: Benchmark, Cluster
Computing, HPC, Supercomputing,
Performance.

1 Mannheim Supercomputer
Statistics 1986–1992 and TOP500
Project Start in 1993

From 1986 through 1992, the
Mannheim supercomputer statistics
were presented to participants of the
Supercomputer Seminars at Mannheim
University, and we noticed an in-
creased interest in this kind of data
from year to year [1]. The statistics
simply counted the vector computer
systems installed in the U.S., Japan and
Europe, since in the mid-80s a
supercomputer was synonymous with
a vector computer. Counting the vec-
tor computers installed worldwide pri-
marily depended on the input provided
by the manufacturers of the systems,
which made the statistics less reliable.
Whereas we knew well which vector
systems existed in the U.S. and Europe,
information regarding systems in Ja-
pan was much more difficult to collect.

High Performance Computing

The TOP500 Project:
Looking Back over 15 Years of Supercomputing

Hans Werner Meuer

© 2008 Informatik Spektrum
This paper was first published, in English, by Informatik-Spektrum (Volume 31, issue 3, April 2008, pp. 203-222). Informatik-

Spektrum (<http://www.springerlink.com/content/1432-122X/>), a UPENET partner, is a journal published, in German or English, by
Springer Verlag on behalf of the German CEPIS society GI (Gesellschaft für Informatik, <http://www.gi-ev.de/>) and the Swiss CEPIS
society SI (Schweizer Informatiker Gesellschaft - Société Suisse des Informaticiens, <http://www.s-i.ch/>)

The TOP500 project was launched in 1993 to provide a reliable basis for tracking and detecting trends in high perform-
ance computing. Twice a year, a list of the sites operating the world’s 500 most powerful computer systems is compiled and
released. The best performance on the Linpack benchmark is used as the measurement for ranking the computer systems.
The list contains a variety of information including the systems’ specifications and major application areas. Information
on all 30 TOP500 lists issued to date is available at: www.top500.org

We therefore contacted the three Japa-
nese vector computer manufacturers –
Fujitsu, NEC and Hitachi – for infor-
mation on all systems installed in Ja-
pan and used their data as the basis for
our yearly estimations.

In 1992, we released the last
Mannheim statistics, counting 530 su-
percomputers installed worldwide.
Figure 1 shows the result of our 7-year
activity regarding the share of the
different manufacturers in the
supercomputer market. Cray clearly
led with a constant share of about 60%;
the second U.S. manufacturer, CDC

Author

Prof. Dr. Hans Werner Meuer is the Managing Director of Prometeus GmbH, and the
General Chairman of ISC’08 in Dresden. He is Professor Emeritus of Computer Science
at the University of Mannheim, Department of Mathematics and Computer Science.
Hans Meuer received his doctorate in mathematics in 1972 from RWTH Aachen
University, Germany. He served as specialist, project leader, group and department
chief during his 11 years at the Research Center in Jülich, Germany, from 1962–1973.
For the following 26 years, he was Director of the Computer Center at the University of
Mannheim, Germany, and Professor of Computer Science for 28 years.
<hans.meuer@supercomp.de>

(Control Data Corporation), had been
doing rather well with just under 10%
– until the end of the 80s when their
share started to drop, and they were
completely out of the supercomputer
business in 1991. The Japanese vector
computer manufacturers Fujitsu, NEC
and Hitachi entered into our statistics
in 1986 with a combined share of 20%,
and were able to expand their share to
about 40% in 1992, with Fujitsu clearly
in the lead at 30% of all vector com-
puters installed worldwide.

Figure 2 illustrates the shares of
vector computer installations by coun-

UPGRADE Vol. IX, No. 2, April 2008 47© CEPIS

UPENET

Figure 1: Manufacturers’ Shares.

Figure 2: Countries’ Shares.

try. The U.S. clearly led in 1986 with a
share of 50%, but which dropped to
35% in 1992, however. In Japan, the
situation developed in the opposite di-
rection, with a share of about 20% in
1986 and already 40% in 1992, sur-
passing the U.S. share. Europe had a
constant share of between 25% and
30% over the seven years, with Ger-
many leading slightly ahead of France
and the U.K.

Though useful, the Mannheim
supercomputer statistics were not per-
fect, as they lacked a reliable database.
Additionally, the so-called entry level
vector computer systems such as
Fujitsu’s VP30/50 became more and
more popular in Japan. But were these
systems really supercomputers in terms
of performance? And how should mini-
supercomputers such as the Convex
C1/2 from the U.S. be rated? We had
to carefully consider which systems
qualified as supercomputers and there-
fore should be listed in the Mannheim
statistics. From the early 90s on, vec-
tor computers were no longer the only
supercomputer architecture; massively
parallel systems such as the CM2 of
Thinking Machines (TMC) had entered
the market. What we therefore needed
was a method to define what consti-
tuted a "supercomputer" and could be
updated on a yearly basis.

This is why Hans Werner Meuer
and Erich Strohmaier started the

TOP500 project at the University of
Mannheim/Germany, in spring 1993.
Here are its simple guiding principles:

Listing of the 500 most power-
ful computers in the world.

Rmax, the best Linpack per-
formance, is used as the benchmark [2].

The TOP500 list is updated and
published twice a year, in June at ISC
in Germany and in November at SC in
the U.S.

All TOP500 data is publicly
available at www.top500.org

There are some immediate ques-

tions that we would like to answer here:
Why is it "the 500 most power-

ful computers"? One reason is that the
last time we counted the supercomput-
ers worldwide in 1992, we ended up
with 530. And another reason surely is
the (emotional) influence of the Forbes
500 lists, e.g. of the 500 richest men or
the 500 biggest corporations in the
world.

"Most powerful" is defined by
a common benchmark, for which we
had chosen Linpack. But why
Linpack? Linpack data, above all
Rmax, are well known and easily avail-
able for ALL systems in question.
Strictly speaking, TOP500 lists com-
puters only by their ability to solve a
set of linear equations, A x = b, using a
dense random matrix A.

An alternative to updating the
TOP500 list twice a year would be to
continuously update the list. Why don’t
we do this? First, updating the TOP500
list is a time-consuming and complex
process. Second, we thought that a bi-
annual publication would be a much
better way to show significant changes,
which the HPC community is prima-
rily interested in, and this has proven
to be true over the years.

TOP500 authors are Hans Werner
Meuer, Erich Strohmaier, now Law-
rence Berkeley National Laboratory
(LBNL), USA, and Jack Dongarra, the
"Father of Linpack", University of Ten-

48 UPGRADE Vol. IX, No. 2, April 2008 © CEPIS

UPENET

Figure 3: 1st and 30th TOP500 Lists – Countries.

0

100

200

300

400

500

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

Othe

Chin

Kore

Italy

Fran

UK

Germ

Japa

US

Figure 4: Supercomputer Installations Worldwide

nessee, USA. The fourth author, Horst
Simon, LBNL, had supported the
TOP500 project from the very begin-
ning and joined the project officially
in 2000. In 1999, only six years after
starting the project, the authors pub-
lished their experiences with TOP500
[3].

30 TOP500 lists have been pub-
lished up to now:

First TOP500 list was published
on June 24, 1993, at ISC’93 in
Mannheim, Germany.

29th TOP500 list was published
on June 27, 2007, at ISC’07 in Dres-
den, Germany.

30th TOP500 list was published
on November 12, 2007, at SC07 in
Reno, USA.

The release dates of the next three
TOP500 lists are:

31st TOP500 list will be pub-
lished on June 18, 2008, in Dresden,
Germany.

32nd TOP500 list will be pub-
lished on November 18, 2008, in Aus-
tin, USA.

33rd TOP500 list will be pub-
lished on June 24, 2009, in Hamburg,
Germany.

After 15 years and 30 lists, we have
managed to establish TOP500 among
HPC users, manufacturers and the
media as THE instrument for analyzing
the HPC market.

2 Competition between Coun-
tries, Manufacturers and Sites

One of the most important reasons
for TOP500’s success is that we foster
competition between countries, manu-
facturers and computing sites.

2.1 Competition between
Countries

From our 7th Mannheim
supercomputer statistics published at
the Mannheim Supercomputer Semi-
nar in 1992, we expected a neck-and-
neck race between the U.S. and Japan
for our first TOP500 list (see Figure
3). However, the "Japanese danger"
was grossly overestimated, as the first
TOP500 list showed the U.S. clearly

leading with 45% of all TOP500 in-
stallations, and Japan was far behind
with only 22%.

If we look at the 30th TOP500 list
published in November 2007 at SC in
Reno/USA, we see that the dominance
of the U.S. is even bigger today than
15 years ago: Now they have a share
of 56.6 % of all systems installed, and
Japan holds a share of only 4%. Even
the U.K., with a 9.6% share, and Ger-
many, with a 6.2% share, are ahead of
Japan, which is followed closely by
France with 3.4%.

The overall development of the
various countries’ share through the
past 30 TOP500 lists is also very
interesting (see Figure 4). In 1993, the

1st TOP500 List, 06/1993 30th TOP500 List, 11/2007
Country Count Share Country Count Share
USA 225 45.0% USA 283 56.6%
Japan 111 22.2% Japan 20 4.0%
Germany 59 11.8% Germany 31 6.2%
France 26 5.2% France 17 3.4%
U.K. 25 5.0% U.K. 48 9.6%
Australia 9 1.8% Australia 1 0.2%
Italy 6 1.2% Italy 6 1.2%
Netherlands 6 1.2% Netherlands 6 1.2%
Switzerland 4 0.8% Switzerland 7 1.4%
Canada 3 0.6% Canada 5 1.0%
Denmark 3 0.6% Denmark 1 0.2%
Korea 3 0.6% Korea 1 0.2%
Others 20 4.0% China 10 2.0%
Total 500 100.0% India 9 1.8%
 Others 55 11.0%
 Total 500 100.0%

UPGRADE Vol. IX, No. 2, April 2008 49© CEPIS

UPENET

Figure 5: Supercomputer Installations in Asia.

Figure 6: 1st and 30th TOP500 Lists – Manufacturers.

U.S. started with a huge share of 45%,
which they have even managed to ex-
pand slightly. Japan, however, started
with a 22% share but has fallen back
significantly. In Europe, Germany,
which had always clearly been ahead
of the U.K., is now far behind the U.K.

Figure 5 illustrates the de-
velopment of the supercomputer
installations in Asia since 1993. It
shows the rapid drop in Japan’s share
and indicates that China and India will
enter the HPC market as new players
in the medium term. But we will have
to wait until the next TOP500 lists to
see how this plays out.

2.2 Competition between
Manufacturers

If we focus on the manufacturers
(see Figure 6), Cray Research was the
clear leader on our first TOP500 list
with a 41% share, ahead of Fujitsu with
14 %. Third place was already held by
TMC – a non-vector supercomputer
manufacturer – with 10.8%, ahead of
Intel with 8.8%. At that time, Intel still
had its Supercomputer Division, which
also produced non-vector supercom-
puters. Surprisingly, today’s leading
HPC manufacturers, IBM and Hewlett-
Packard, were not represented on the
first TOP500 list at all.

In the 30th TOP500 list of Novem-
ber 2007, IBM has the clear lead with
a 46.4% share. The second position is
held by Hewlett Packard with 33.2%,
and the leader of 1993, Cray Research
(now Cray Inc.), is now down to 2.8%.

If we look at the development of
the manufacturers since 1993 (see Fig-
ure 7), we notice that the HPC market
has been very dynamic: in only 15
years, the market has seen a complete
transformation. Cray has turned from
the clear market leader in the general
HPC market, including the industrial
customer segment, into a niche player
for high-end government research

1st TOP500 List, 06/1993 30th TOP500 List, 11/2007
Manufacturer Count Share Manufacturer Count Share
Cray Research 205 41.0% Cray Inc. 14 2.8%
Fujitsu 69 13.8% Fujitsu 3 0.6%
Thinking Machines 54 10.8% Thinking Machines – –
Intel 44 8.8% Intel 1 0.2%
Convex 36 7.2% Hewlett-Packard 166 33.2%
NEC 32 6.4% NEC 2 0.4%

Kendall Square Res. 21 4.2% Kendall Square
Res. – –

MasPar 18 3.6% MasPar – –
Meiko 9 1.8% Meiko – –
Hitachi 6 1.2% Hitachi/Fujitsu 1 0.2%
Parsytec 3 0.6% Parsytec – –
nCube 3 0.6% nCube – –
Total 500 100.0% IBM 232 46.4%
 SGI 22 4.4%
 Dell 24 4.8%
 Others 35 7.0%
 Total 500 100.0%

50 UPGRADE Vol. IX, No. 2, April 2008 © CEPIS

UPENET

0

100

200

300

400

500
19

93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

Others
Hitachi
NEC
Fujitsu
Intel
TMC
HP
Sun
IBM
SGI
Cray

Figure 7: Manufacturers / Systems.

Figure 8: TOP20 through 30 TOP500 Lists.

laboratories and academic customers.
IBM on the other hand, which was of
virtually no importance in the HPC
market in the early 90s, has become the
dominant market leader in all market
segments, including industrial and
commercial customers. Hewlett-
Packard – once a small HPC manufac-
turer represented in the first TOP500
lists only by Convex, which they later
took over – has established itself as
number two, right after IBM. Sun
Microsystems, which used to be

number two among the HPC manufac-
turers a couple of years ago, has fallen
back dramatically in the TOP500. But
Sun is now trying to catch up with the
other HPC manufacturers. And also a
re-invigorated Cray might be back in
the general HPC arena again: They
currently have three hybrid supercom-
puters in the TOP10, which shows that
they have successfully left behind their
approach of pure vector computing.
With only very few systems in the
overall TOP500 list, however, Cray

will have to work hard to replicate its
earlier success.

2.3 Competition between Sites
Figure 8 lists the 20 most powerful

sites through 30 TOP500 lists. The
percentage in the right-hand column is
a site’s relative contribution to the
Rmax total of the average list of 30. In
this list, the U.S. leads with two-thirds
of the sites (14) ahead of Japan, with
four centers (20%). The fact that the
U.S. has the four most powerful sites
in the world also shows its dominance
as a consumer and producer of HPC
systems. Europe is represented by Ger-
many (Forschungszentrum Jülich, FZJ)
at position 18 and by the U.K. (ECMWF)
at position 15. (Note that ECMWF is a
European and not purely a U.K. site.)

3 My Favorite Supercomputer
in All TOP500 Lists so far

We have published 30 TOP500 lists
with a total of 15,000 systems, and our
data base has even twice as many en-
tries. So it might sound strange that I
have just one favorite system. I would
like to emphasize, however, that there

Rank Site Country Over time

1 Lawrence Livermore National Laboratory USA 5.39%

2 Sandia National Laboratories USA 3.70%

3 Los Alamos National Laboratory USA 3.41%

4 Government USA 3.34%

5 The Earth Simulator Center Japan 1.99%

6 National Aerospace Laboratory of Japan Japan 1.70%

7 Oak Ridge National Laboratory USA 1.39%

8 NCSA USA 1.31%

9 NASA/Ames Research Center/NAS USA 1.25%

10 University of Tokyo Japan 1.21%

11 NERSC/LBNL USA 1.19%

12 Pittsburgh Supercomputing Center USA 1.15%

13 Semiconductor Company (C) USA 1.11%

14 Naval Oceanographic Office (NAVOCEANO) USA 1.08%

15 ECMWF U.K. 1.02%

16 ERDC MSRC USA 0.91%

17 IBM Thomas J. Watson Research Center USA 0.86%

18 Forschungszentrum Jülich (FZJ) Germany 0.84%

19 Japan Atomic Energy Research Institute Japan 0.83%

20 Minnesota Supercomputer Center USA 0.74%

UPGRADE Vol. IX, No. 2, April 2008 51© CEPIS

UPENET

Figure 10: Performance [Gigaflop/s].

are many systems that impressed me
over the past 15 years. Before I reveal
my favorite supercomputer, I would
like to highlight another one here first:
It was number 259 on our 9th TOP500
list published at the Mannheim
Supercomputer Seminar (ISC’97) in
1997. This system, named "Deep
Blue", was installed at the IBM Watson
Research Center in Yorktown Heights
and had a best Linpack performance
of 11.37 Gigaflop/s; it was an IBM SP2
P2SC with 32 processors and a clock
rate of 120 MHz. But the floating point

performance was not what really mat-
tered: Each of the 32 processors was
equipped with 15 special-purpose
VLSI chess chips. Deep Blue was the
first chess computer to beat a reigning
world chess champion, Garry
Kasparov [4]. Ten years after this
event, no chess player stands a chance
against any kind of computer, not even
against a simple home computer. One
year ago, in November/December
2006, Deep Fritz played a six-game
match against reigning world chess
champion Wladimir Kramnik in Bonn.

Deep Fritz won 4–2 [5].

3.1 My All-time Favorite: Intel’s
ASCI Red

During the 1996 acceptance tests at
Sandia National Laboratories in
Albuquerque/USA, Intel’s ASCI Red
showed an Rmax performance of 1,068
Gigaflop/s. Thus it was the first
Teraflop/s computer to enter the HPC
arena, and it immediately grabbed the
first place on our 9th TOP500 list of
June 1997 (see Figure 9).

"ASCI" stands for "Accelerated

Figure 9: Top 10 Sites of the 9th TOP500 List, June 1997.

Rank Manufacturer Computer Rmax
[GF/s] Site Country Year #Proc

1 Intel ASCI Red 1,068 Sandia National Laboratories USA 1996 7264

2 Hitachi CP-PACS/2048 368.2 Center for Computational Science Japan 1996 2048

3 Fujitsu Numerical Wind
Tunnel 229 National Aerospace Laboratory Japan 1996 167

4 Hitachi SR2201/1024 220.4 University of Tokyo Japan 1996 1024

5 Cray T3E 176 Forschungszentrum Jülich Germany 1996 512

6 Cray T3E 176 Government USA 1996 512

7 Cray T3E 176 Max-Planck-Gesellschaft MPI/IPP Germany 1996 512

8 Cray T3E 176 NASA/Goddard Space Flight
Center USA 1996 512

9 Cray T3E 176 Pittsburgh Supercomputer Center USA 1996 512

10 Cray T3E 176 University of Stuttgart Germany 1996 512

52 UPGRADE Vol. IX, No. 2, April 2008 © CEPIS

UPENET

1

10

100

500

Jun
-97

Jun
-98

Jun
-99

Jun
-00

Jun
-01

Jun
-02

Jun
-03

Jun
-04

Jun
-05

1

10

100

500

Jun
-97

Jun
-98

Jun
-99

Jun
-00

Jun
-01

Jun
-02

Jun
-03

Jun
-04

Jun
-05

1

10

100

500

Jun
-97

Jun
-98

Jun
-99

Jun
-00

Jun
-01

Jun
-02

Jun
-03

Jun
-04

Jun
-05

Figure 11b: Number of Teraflop/s Systems in the TOP500 Lists
between 1997 and 2005: 1997–2003.

1

10

100

500

Jun
-97

Jun
-98

Jun
-99

Jun
-00

Jun
-01

Jun
-02

Jun
-03

Jun
-04

Jun
-05

1

10

100

500

Jun
-97

Jun
-98

Jun
-99

Jun
-00

Jun
-01

Jun
-02

Jun
-03

Jun
-04

Jun
-05

1

10

100

500

Jun
-97

Jun
-98

Jun
-99

Jun
-00

Jun
-01

Jun
-02

Jun
-03

Jun
-04

Jun
-05

Figure 11c: Number of Teraflop/s Systems in the TOP500
Lists between 1997 and 2005: 1997–2005.

ASCI Red was the last supercomputer
designed and assembled solely by Intel;
Intel’s Supercomputer Division had al-
ready been closed down when ASCI Red
was launched [6].

3.2 Eight-year Forecast
At the opening session of the 12th

Supercomputer Conference in
Mannheim in June 1997, we released
our 9th TOP500 list with the new
number one system: ASCI Red (see
Figure 10). Considering the measured
data from the nine TOP500 lists from
June 1993-June 1997 and assuming
that the increases in performance
would continue as before, we extrapo-
lated the performance of future systems
using linear regression on the logarith-
mic scale. We fit exponential growth
to these three levels of performance,
the sum of all 500 systems, the number
one system and the entry level system.

Based on the extrapolation of these
fits, I announced at ISC’97 that, eight
years from then, i.e. in 2005, there
would be only Teraflop/s systems on
the TOP500 list, even though the 1997
list had only one: Intel’s ASCI Red.

Probably many of the ISC’97
attendees thought I was crazy to make
a forecast eight years out for such a dy-
namic market. And I do have to admit
that I did not feel too comfortable my-
self – going out on a limb like that in
front of many of the world’s top HPC
experts. You certainly can imagine that
I was extremely anxious to see the next
TOP500 lists. (see Figures 11a, 11b and
11c.)

The TOP500 lists of November 1997,
June 1998 and November 1998 had still
only one Teraflop/s system: ASCI Red. I
started to get really nervous...

... but fortunately, the TOP500 list of
June 1999 showed a new Teraflop/s sys-
tem: SGI’s ASCI Blue Mountain at Los
Alamos National Laboratory. It was the
second system worldwide to break the
Linpack Teraflop/s barrier, and with 1.6
Teraflop/s, it took second place on the
June 1999 TOP500 list. ASCI Red was
slightly over 2 Teraflop/s then, as Intel
had managed to increase the number of
processors to more than 9,000.

And in June 2005 – as I had pre-
dicted eight years earlier – there were
only Teraflop/s systems in the TOP500

Figure 11a: Number of Teraflop/s Systems in the TOP500 Lists
between 1997 and 2005: 1997–1998.

1

10

100

500

Jun
-97

Jun
-98

Jun
-99

Jun
-00

Jun
-01

Jun
-02

Jun
-03

Jun
-04

Jun
-05

1

10

100

500

Jun
-97

Jun
-98

Jun
-99

Jun
-00

Jun
-01

Jun
-02

Jun
-03

Jun
-04

Jun
-05

1

10

100

500

Jun
-97

Jun
-98

Jun
-99

Jun
-00

Jun
-01

Jun
-02

Jun
-03

Jun
-04

Jun
-05

Strategic Computing Initiative". This
initiative, under the auspices of the
Department of Energy (DOE), was the
U.S. response to France’s nuclear
weapons tests at the Mururoa atoll,
where France conducted 41 atmos-
pheric and 147 underground nuclear
tests between 1966 and 1996. DOE’s
"Accelerated Strategic Computing Ini-
tiative" applies advanced capabilities

in scientific and engineering comput-
ing to one of the most complex chal-
lenges in the nuclear era: maintaining
the performance, safety, and reliabil-
ity of the U.S. nuclear weapons arse-
nal without physical testing. ASCI was
established in 1996 in response to the
government’s commitment to pursue a
comprehensive ban on nuclear weap-
ons testing.

UPGRADE Vol. IX, No. 2, April 2008 53© CEPIS

UPENET

Figure 12: Top 10 Sites of the 30th TOP500 List, November 2007.

list. The entire Teraflop/s market had
gained momentum since 1999.
Whereas the June 2001 TOP500 list
showed only a few more than 10 Tera-
flop/s systems, the 2003 list already
had more than 100 such systems.

3.3 Why Intel’s ASCI Red is my
Favorite System in the TOP500

Here are the reasons why ASCI Red
is my favorite system:

1. We saw the CDC 7600 (a pred-
ecessor model of the later vector com-
puters) break the Megaflop/s barrier
with 1.24 Megaflop/s in 1971, and we
also saw the legendary Cray 2 exceed
the Gigaflop/s barrier in 1986, boast-
ing 2 GB of memory and a best
Linpack performance Rmax of 1.7
Gigaflop/s. But what impressed me the
most was when Intel’s ASCI Red broke
the Teraflop/s barrier in 1997. Of
course, I hope to see the breaking of
the Petaflop/s barrier this year (2008).
I will thus have personally witnessed
an increase in supercomputer perform-
ance of 10 orders of magnitude over
the years.

2. Intel’s ASCI Red marked the
beginning of a new supercomputer era.
In the mid-90s when vector comput-
ers started to become less important,
DOE’s ASCI initiative, which focused

on defense applications, opened up a
completely new source of funds. ASCI
Red was the first product of this initia-
tive and laid the foundation for the U.S.
dominance in the production and im-
plementation of supercomputers. ASCI
Red was also a remarkable
supercomputer from a technical point
of view:

It was a mesh-based (38 X 32 X 2)
MIMD massively parallel machine ini-
tially consisting of 7,264 compute
nodes, 1,212 gigabytes of total distrib-
uted memory and 12.5 terabytes of disk
storage. The original incarnation of this
machine used Intel Pentium Pro proc-
essors, each clocked at 200 MHz.
These were later upgraded to Pentium
II OverDrive processors. The system
was upgraded to a total of 9,632
Pentium II OverDrive processors, each
clocked at 333 MHz. It consisted of
104 cabinets, taking up about 2,500
square feet (230 m2). The system was
designed to use commodity mass-mar-
ket components and to be very scal-
able.

3. In June 1997, I predicted that,
eight years later, there would be only
Teraflop/s systems on the TOP500 list,
even though just a single Teraflop/s
computer existed at that time, and this

was ASCI Red. Never before – and
probably never again – has one of my
forecasts proven so accurate. ASCI
Red was retired from service in Sep-
tember 2005, after having been on 17
TOP500 lists over eight years. It was
the fastest computer on the TOP500 list
from June 1997 to June 2000 and was
replaced as the number one by IBM’s
ASCI White at Lawrence Livermore
National Laboratory on the November
2000 list.

4. And finally, ASCI Red was the
reason I got invited to give an inter-
view on German TV (ZDF, Zweites
Deutsches Fernsehen). Shortly before
Christmas 1996, Nina Ruge, a German
TV journalist, interviewed me on her
late-night TV show "Heute Nacht"
about the first computer to exceed the
Teraflop/s barrier: Intel’s ASCI Red.

4 Highlights of the 30th TOP500
List and Bell’s Law

4.1 Highlights of the 30th List [7]
Among the 10 top sites on the 30th

TOP500 list are five new systems and
one substantially upgraded system
(marked gray in Figure 12). The main
changes have taken place among the
first five places. Place number one
again goes to BlueGene/L, a joint de-

Rank Manufacturer Computer Rmax
[TF/s] Site Country Year #Cores

1 IBM BlueGene/L eServer
Blue Gene 478.2 DOE/NNSA/LLNL USA 2007 212,992

2 IBM JUGENE
BlueGene/P Solution 167.3 Forschungszentrum Jülich Germany 2207 62,536

3 SGI SGI Altix ICE 8200 126.9 New Mexico Computing
Center USA 2007 14,336

4 HP Cluster Platform
3000 BL460c 117.9 Computational Research

Laboratories, TATA SONS India 2007 14,240

5 HP Cluster Platform
3000 BL460c 102.8 Swedish Government

Agency Sweden 2007 13,728

6 Sandia/Cray Red Storm Cray XT3 102.2 DOE/NNSA/Sandia USA 2006 26,569

7 Cray Jaguar Cray XT3 101.7 DOE/ORNL USA 2007 23,016

8 IBM BGW eServer Blue
Gene 91.3 IBM Thomas Watson USA 2005 40,960

9 Cray Franklin Cray XT4 85.4 NERSC/LBNL USA 2007 19,320

10 IBM New York Blue
eServer Blue Gene 82.2 Stony Brook/BNL USA 2007 36,864

54 UPGRADE Vol. IX, No. 2, April 2008 © CEPIS

UPENET

velopment of IBM and the Department
of Energy’s (DOE) National Nuclear
Security Administration (NNSA),
which is installed at DOE’s Lawrence
Livermore National Laboratory in
Livermore, CA/USA. BlueGene/L had
been in first place since November 2004;
however, the current system has been
significantly upgraded so that it now
achieves a Linpack benchmark perform-
ance of 478.2 Teraflop/s (trillions of
calculations per second) compared to a
performance of 280.6 Teraflop/s six
months ago, before its upgrade.

Place number two is held by a
brand-new first installation of a newer
version of the same type of IBM sys-
tem. It is a BlueGene/P system installed
at the Forschungszentrum Jülich (FZJ),
Germany, with a performance of 167.3
Teraflop/s.

The number three system is not
only a new one, but also the first sys-
tem of a new supercomputing center:
the New Mexico Computing Applica-
tions Center (NMCAC) in Rio Rancho/
USA. The system, built by SGI and
based on the Altix ICE 8200 model,
reaches a speed of 126.9 Teraflop/s.

For the first time ever, India has
been able to place a system in the
Top10, at number four. The Com-
putational Research Laboratories, a
wholly owned subsidiary of Tata Sons
Ltd. in Pune/India, installed a Hewlett-
Packard Cluster Platform 3000
BL460c system. They integrated this
system with their own innovative rout-
ing technology and achieved a per-
formance level of 117.9 Teraflop/s.

The number five system is also a
new Hewlett-Packard Cluster Platform
3000 BL460c system, installed at a
Swedish government agency. It was
measured at 102.8 Teraflop/s.

The last new system in the Top10
is a Cray XT4 system installed at the
National Energy Research Scientific
Computing Center (NERSC) at DOE’s
Lawrence Berkeley National Labora-
tory in Berkeley, CA/USA. With a Lin-
pack performance of 85.4 Teraflop/s,
it ranks ninth.

Processor Architecture / Systems
Figure 13 illustrates that vector

computers are on the retreat in the
TOP500: On the 30th TOP500 list of
November 2007, there are only four

vector computer systems, two from
Cray Inc. and two from NEC, among
them the worldwide number one of
2002–2004, the Earth Simulator in
Yokohama/ Japan, which has fallen to
number 30.

Operating Systems / Systems
Up to a couple of years ago, UNIX

in all its variations was the prevalent
operating system on supercomputers,
but now Linux has taken over this role.
Despite Microsoft’s effort to break into
this market, Windows plays no role
(see Figure 14).

Processor Generations / Systems
354 out of 500 systems (70.8%) use

Intel processors, whereas six months
ago, only 289 systems (57.8%) had
Intel processors. This is the largest
share for Intel chips in the TOP500
ever. Especially successful are the
Dual-Core Woodcrest and the
Quadcore Clovertown processors with
a share of 43% and 20.4% respectively.
The AMD Opteron family, which left
the IBM Power processors behind a
year ago, still remains the second-
most-common processor family, even
though the number of systems using
this processor went down from 105
(21%) to 78 (15.6%). 61 systems
(12.2%) run on IBM Power processors,
compared to 85 systems (17%) half a
year ago (see Figure 15).

Interconnect Family / Systems
Due to its widespread use by indus-

trial customers, Gigabit Ethernet is still
the most widely utilized internal sys-
tem interconnect technology (270 sys-
tems). It is followed by InfiniBand
technology with 121 systems. Myrinet,
which dominated the market a couple
of years ago, has fallen even further
back (see Figure 16).

Architectures / Systems
The most widely used architecture

is the cluster architecture, as 406 out
of 500 systems (81.2%) are labeled as
clusters. Times are long gone when
clusters only appeared in the second
half of the TOP500 list. There are even
two cluster systems among the TOP10,
including the most powerful system in
Asia at number four, the Cluster Plat-
form system of HP. Constellations have
dropped to 0.6%. MPPs hold an 18.2%
share, with eight systems in the TOP10
(see Figure 17).

4.2 Bell’s Law (1972)
Bell’s Law of Computer Class for-

mation was discovered about 1972 [8].
It states that technology advances in
semiconductors, storage, user inter-
faces and networking take place ap-
proximately every decade enabling a
new, usually lower-priced computing
platform to form. Once formed, each
class is maintained as a quite inde-
pendent industry structure. This ex-
plains mainframes, minicomputers,
workstations and personal computers,
the web, emerging web services, palm
and mobile devices and ubiquitous in-
terconnected networks. We can expect
home and body area networks to fol-
low this path. Bell’s Law states that
important classes of computer
architectures come in cycles of about
ten years. It takes about a decade for
each of the phases:

Early research.
Early adoption and maturation.
Prime usage.
Phase out past its prime.

When I was preparing my presen-
tation for the IDPT conference in
Antalya in June 2007 [9] Erich Stroh-
maier and I asked ourselves: Can we
use Bell’s Law to classify computer
architectures in the TOP500?

We make an attempt by introduc-
ing the following architectures/compu-
ter classes:

Data parallel systems
Vector (Cray Y-MP and X1,
NEC SX etc.)
SIMD (CM-2 etc.)
Custom scalar systems
MPP (Cray T3E and XT3, IBM
SP etc.)
Scalar SMPs and Constellations
(Cluster of big SMPs)
Commodity clusters
NOW, PC cluster, Blades etc.
Power-efficient systems
BG/L or BG/P as first examples
of low-power systems. They
might be able to form a new
class, but we do not know this
yet.

When analyzing all TOP500 lists
from the very beginning in 1993 up to
now, we find the following computer
classes over time, as shown in Figures
18 and 19.

The HPC computer classes "Data

UPGRADE Vol. IX, No. 2, April 2008 55© CEPIS

UPENET

0

100

200

300

400

500
19

93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

SIMD

Vector

Scalar

Figure 13: Processor Architecture / Systems.

0

100

200

300

400

500

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

Windows

Mac OS

N/ A

Mixed

BSD Based

Linux

Unix

i 14 O i S / S
Figure 14: Operating Systems / Systems.

Figure 15: Processor Generations / Systems.

parallel systems", "Custom scalar sys-
tems" and also "Commodity clusters"
follow nicely the 10-year cycle of
Bell’s Law and confirm this law for
HPC computer architectures, see Fig-
ure 20. For simplicity, we have left out
the "Early research" phase of Bell’s
Law. Of course, we have to wait and
see whether or not the 10-year "Past
prime usage" phase of the "Commodity
clusters" class will really start around
2010. And there is even more specula-
tion about which way the "Power-effi-
cient systems" class, represented by
IBM’s BG series, will go. A couple of
smaller such systems were delisted
from the 30th TOP500 list due to poor
performance. The next TOP500 lists
will show whether or not the "Power-
efficient systems" class will really be
a class of its own.

5 Performance Development
and Performance Projections

In Figure 21, we have plotted the
performance over the last 15 years at
position N=500 (entry level perform-
ance), at the leading position (number
one), as well as the total accumulated
performance, the sum of all 500 sys-
tems. As can easily be seen, all these
curves show an exponential growth.
The scale on the left-hand side is a
logarithmic scale.

If we compare this growth with
Moore’s Law, we find that, even
though Moore’s Law assumes a dou-
bling in performance every 18 months

for microprocessors, our growth is
larger. We have a doubling for the sum
in approximately 14 months, for the
number one position in approximately
13 months and even for the number 500
position in a little less than 13 months.
There are two main reasons for this lar-
ger growth in performance: processor
performance and number of processors
used.

Also note that the curves at posi-
tions one and 500 are quite different:
At number one, we typically see a step
function. Once a system has made
number one, it remains there in the next
couple of TOP500 lists. That was true
for the "Numerical Wind Tunnel –
NWT", Intel’s ASCI Red and also for
the "Earth Simulator", which ranked
first from June 2002 through June
2004. And it also proves true for the

56 UPGRADE Vol. IX, No. 2, April 2008 © CEPIS

UPENET

0

100

200

300

400

500
19

93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

Others

Quadric

Propriet

Fat Tree

Infiniba

Cray Int

Myrinet

SP Swit

Gigabit

Crossba

N/ A

Figure 16: Interconnect Family / Systems.

0

100

200

300

400

500

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

SIMD

Single Proc.

SMP

Const.

Cluster

MPP

Figure 17: Architectures / Systems.

Figure 18: Computer Classes in HPC Based on the TOP500: Computer Classes / Systems.

current number one supercomputer
(since November 2004), IBM’s
BlueGene/L at Lawrence Livermore
National Laboratory (LLNL), holding
this position at different stages of ex-
pansion.

If we include a powerful notebook
in this figure, we notice that its per-
formance has reached 7 Gigaflop/s
now and has thus grown by a factor of
10 within three years.

Again, as when discussing Intel’s
ASCI Red, we have done a projection
into the future, based on 30 lists of real
data, by a least square fit on the
logarithmic scale (see Figure 22). For
a powerful notebook, for example, this

means that it will have a Teraflop/s
performance in the year 2014, i.e. in
less than 18 years after the first
Teraflop/s system, ASCI Red, entered
the HPC arena.

Generally, it will take six to eight
years for any system to move from
position one to 500 and eight to ten
years to move from position 500 to
notebook level.

The Linpack Petaflop/s threshold
will be reached in 2008. One of the hot
candidates for the first Petaflop/s sys-
tem to enter the TOP500 list is IBM’s
RoadRunner at Los Alamos National
Laboratory, USA. In 2015, there will
be only Petaflop/s systems in the
TOP500 list. Our projection also shows
that the first Exaflop/s computer will

UPGRADE Vol. IX, No. 2, April 2008 57© CEPIS

UPENET

Figure 19: Computer Classes in HPC Based on the TOP500. Computer Classes – Refined / Systems.

Figure 20: HPC Computer Classes and Bell’s Law.

enter the TOP500 list in 2019, and only
one year later, in 2020, there will be
the first notebooks with a performance
of 100 Teraflop/s.

The rule seems to be that system
performance increases by a factor
1,000 every eleven years: Cray 2 broke
the Gigaflop/s barrier in 1986 (in pre-
TOP500 times); Intel’s ASCI Red ex-
ceeded the Teraflop/s barrier in 1997;
the first Petaflop/s system will enter the
TOP500 list this year (2008); and, ac-
cording to our projection, the Exaflop/
s threshold will be reached in 2019.

6 Top500 in the Future
6.1 The TOP500 Website
The results of ALL 30 TOP500 lists

and a variety of additional information
are available on our TOP500 website:
www.top500.org. This site draws
remarkable traffic – more than 20K
page impressions per day and is kept
up to date by Anas Nashif, our Techni-
cal Manager, who is also responsible
for the TOP500 data base. The website
has been improved and relaunched re-
cently and offers many interesting fea-
tures: access to sublists, list charts, list
statistics and up-to-date information on
the HPC market in general. The
TOP500 project is financed – but not
influenced – by advertising on the web-
site.

6.2 Summary after 15 Years of
Experience

The TOP500 corrected the deficits
of the Mannheim supercomputer sta-

tistics, which we had used for seven
years at the ISC conferences of 1986-
92, and has proven to be a reliable tool
ever since. Its simple but successful
approach based on the Linpack bench-
mark, though often criticized, is able
to get trends right, as far as processors,
architectures, manufacturers, countries
and sites are concerned. And as shown
in Chapter 3, "My Favorite
Supercomputer in all TOP500 Lists so
far", its performance predictions turn
out remarkably correct, even over such
a long period as eight years.

The TOP500 lists should only be
seen as a source of information for
general trends. As such, they are ex-
tremely useful and much more reliable
than the predictions of market research
companies such as IDC, Diebold, etc.
However, we have always advised peo-
ple not to use the TOP500 lists to an-

swer specific questions such as: Is sys-
tem X at position 254 better suited for
a certain application than system Y at
position 344? For these cases, you
would have to run your own bench-
marks and applications sets on the sys-
tems in question.

With the TOP500 lists, it is also not
possible to estimate the size of the HPC
market (e.g., in US $), as we just do
not know how much the systems at the
different positions cost. We have often
been asked for the systems’ prices, and
we have to admit that this information
would be of great interest to the HPC
community. But at the very beginning
of the TOP500 project we decided not
to include this kind of more or less
unreliable and vague data in our lists.

When analyzing the TOP500 lists,
we find that systems of the upper half
of the list used to remain there for a

Class Early adoption
starts

Prime use
starts

Past prime
usage starts

Data parallel systems Mid 70’s Mid 80’s Mid 90’s

Custom scalar systems Mid 80’s Mid 90’s Mid 2000’s

Commodity clusters Mid 90’s Mid 2000’s Mid 2010’s ???

BG/L or BG/P Mid 2000’s Mid 2010’s ??? Mid 2020’s ???

58 UPGRADE Vol. IX, No. 2, April 2008 © CEPIS

UPENET

couple of periods and smooth out sea-
sonal fluctuations. And there are the
short time entries, which are often on
a list for only six months, since the
turnover is very high. Figure 24 illus-
trates that, on average, approximately
200 systems drop out after six months,
not making it into the following list due
to poor performance.

6.3 Motivation for Additional
Benchmarks

Figure 25 summarizes the pros and
cons of the Linpack benchmark:

6.4 HPC Challenge Benchmark
We clearly need something more

than Linpack for the TOP500, e.g.,

HPC Challenge Benchmark and oth-
ers. At ISC’06 in Dresden/Germany,
Jack Dongarra gave the Friday keynote
presentation on "HPC Challenge
Benchmarks and the TOP500" [10]
(see Figures 26 and 27). The confer-
ence attendees voted his excellent talk
one of the two best ISC’06 presenta-
tions.

The HPC Challenge Benchmark
basically consists of seven different
benchmarks, each stressing a different
part of a computer system. Of course
HPL, the High Performance Linpack
benchmark, is also part of these seven
benchmarks and stands for the CPU.
We do not have the advantages of a

single figure of merit any longer, and
the results of the HPC Challenge
Benchmark are much more complex so
that so-called Kiviat charts are needed.
With these charts, it will be much
harder for journalists, for example, to
report on new systems entering the
HPC arena than when they are evalu-
ated only with Linpack.

Dongarra’s conclusion is that we
will certainly still see Linpack as the
TOP500 benchmark for a while. How-
ever, it needs to be expanded to pro-
duce lists using another yardstick. The
HPC Challenge Benchmark could be-
come a standard in the U.S. when it
comes to selecting an HPC system.

Figure 21: Performance Development.

Figure 22: Performance Projection.

UPGRADE Vol. IX, No. 2, April 2008 59© CEPIS

UPENET

Figure 23: TOP500 Website.

Figure 24: TOP500 Replacement Rate.

6.5 The Green500 List
The Green500 list, overseen by

Wu-chun Feng and Kirk W. Cameron
of Virginia Tech/USA, is another ap-
proach to ranking supercomputers [11].
Its purpose is to list the most energy-
efficient supercomputers in the world
and serve as a complementary view to
the TOP500. However, the latest
Green500 list is far from being com-
plete, as it does not even include all
TOP500 systems. The Green500’s 10
most energy-efficient supercomputers
are all IBM systems, see Figure 28.
This is probably one of the reasons why
IBM strongly supports the project.

The TOP500 authors basically sup-
port the idea of a Green500 list, but
they reserve the right to launch their
own independent and more thorough
project, if necessary.

7 Conclusion
The TOP500 project was launched

in 1993 to improve and renew the
Mannheim supercomputer statistics,
which had been in use for seven years.
Our simple TOP500 approach does not
define "supercomputer" as such, but we
use a benchmark to rank systems and
to decide on whether or not they
qualify for the TOP500 list. The bench-
mark we decided on was Linpack,
which means that systems are ranked

only by their ability to solve a set of
linear equations, A x = b, using a dense
random matrix A. Therefore, any
supercomputer – no matter what its
architecture is – can make it into the
TOP500 list, as long as it is able to
solve a set of linear equations using
floating point arithmetic. We have been
criticized for this choice from the very
beginning, but now, after 15 years, we
can say that it was exactly this choice
that has made TOP500 so successful –
Linpack therefore was a good choice.
And there was, and still is, no alterna-
tive to Linpack. Any other benchmark
would have been similarly specific, but
would not have been so easily avail-

able for all systems – a very important
factor, as compiling the TOP500 lists
twice a year is a very complex proc-
ess.

One of Linpack’s advantages is also
its scalability in the sense that it has
allowed us in the past 15 years to
benchmark systems that cover a per-
formance range of 10 orders of mag-
nitude. It is true that Linpack delivers
performance figures that occupy the
upper end of any other application
performance. In fact, no other realistic
application delivers a better efficiency
(Rmax/Rpeak) of a system. But using
the peak performance instead of
Linpack, which "experts" have often

60 UPGRADE Vol. IX, No. 2, April 2008 © CEPIS

UPENET

Friday Keynote Presentation at ISC’06
Dresden, June 30, 2006

Friday Keynote Presentation at ISC’06
Dresden, June 30, 2006

Friday Keynote Presentation at ISC’06
Dresden, June 30, 2006

Figure 26: ISC’06 Keynote Presentation.

Figure 25: Linpack Benchmark – Pros and Cons.

recommended to us, does not make any
sense. We have seen a lot of new sys-
tems that were not able to run the
Linpack test because they were not sta-
ble enough. For example, it takes more
than six hours to run the Linpack test
on the current number two system on
the TOP500 list, BlueGene/P at
Forschungszentrum Jülich (FZJ).
Therefore, running Linpack to meas-
ure the performance is kind of a first
reliability test for new HPC systems.

The misinterpretation of the
TOP500 results has surely led to a
negative attitude towards Linpack.
Politicians, for example, tend to see
a system’s TOP500 rank as a general
rank that is valid for all applications,
which of course is not true. The
TOP500 rank only reflects a system’s
ability to solve a linear set of equa-
tions, and it does not tell anything
about its performance with respect to
other applications. Therefore, the
TOP500 list is not a tool for select-
ing a supercomputer system for an or-
ganization. In this case, you would
have to run your own benchmark
tests that are relevant to your own ap-
plications. In this context, an ap-
proach such as the "HPC Challenge
Benchmark" consisting of seven dif-
ferent benchmarks, which test differ-
ent parts of a supercomputer, is criti-
cal. As experts run the "HPC Chal-
lenge Benchmark" tests and interpret
their results, it is not a problem not
to have only one single figure of
merit. For this reason, the HPC Chal-
lenge Benchmark has already be-
come a certain criteria in the U.S.
when it comes to buying HPC sys-
tems.

The TOP500 lists’ success lies in
compiling and analyzing data over
time. Despite relying solely on
Linpack, we have been able to cor-
rectly identify and track ALL develop-
ments and trends over the past 15 years,
covering manufactures and users of
HPC systems, architectures, intercon-
nects, processors, operating systems,
etc. And above all, TOP500’s strength
is that it has proved an exceptionally
reliable tool for forecasting develop-
ments in performance.

It is very unlikely that another
benchmark will replace Linpack as
basis for the TOP500 lists in the near
future. And in any case we would stick
to the concept of a single benchmark
because this is the easiest way to trig-
ger competition between manufactur-
ers, countries and sites, which is ex-
tremely important for the overall
acceptance of the TOP500 lists. Of
course, we appreciate it if alternative
benchmarks are introduced to com-

plement Linpack. In fact, we are
working on this already and en-
courage other HPC experts to come
up with constructive suggestions,
too.

Acknowledgement
I would like to thank my colleague,

Erich Strohmaier, for his support, his
advice and his inspiration, as well as for
preparing the data for the figures in this
paper and the TOP500 project in general.
My thanks go also to my two colleagues,
TOP500 authors Jack Dongarra and
Horst Simon, for the many interesting
discussions on TOP500 topics over the
past 15 years, which have been very help-
ful for this paper, too. I would also like to
thank Reiner Hartenstein, University of
Kaiserslautern, for inviting me to give a
talk on this subject at the World Confer-
ence on Integrated Design & Process Tech-
nology (IDPT) in Antalya/Turkey on June
7, 2007. He is the person who suggested
using "Bell’s Law" to classify computer

Pros Cons

• Only one figure of merit
• Simple to define and rank

• Allows problem size to change with machine
and over time

• Allows competition

• Emphasizes only “peak” CPU speed and
number of CPUs

• Does not stress local bandwidth

• Does not stress the network

• No single figure of merit can reflect the
overall performance of an HPC system

UPGRADE Vol. IX, No. 2, April 2008 61© CEPIS

UPENET

Figure 28: Green500’s Top10.

Figure 27: HPC Challenge Benchmark.

References
[1] H. W. Meuer, The Mannheim

Supercomputer Statistics 1986–
1992, TOP500 Report 1993,
University of Mannheim, 1994,
p. 1–15.

[2] See: http://www.top500.org/
project/linpack.

[3] E. Strohmaier, J. J. Dongarra, H.
W. Meuer, H. D. Simon, The
Marketplace of High-Perform-
ance. Computing, Parallel Com-
puting 25, 1999, p. 1517–1544.

[4] See: http://en.wikipedia.org/
wiki IBM_Deep_Blue

[5] See: http://www.spiegel.de/
netzwelt/tech/0,1518,452 735,0
0. html

[6] See: http://www.sandia.gov/
ASCI/Red/

[7] See: http://www.top500.org/
[8] See: http://research.microsoft.

com/~GBell/Pubs.htm
[9] World Conference on Integrated

Design & Process Technology
(IDPT), Antalya/Turkey, June
3–8, 2007, http://www.fpl.uni-
kl.de/IDPT/IDPT2007-final.pdf

[10] See: http://www.netlib.org/utk/
people/JackDongarra/SLIDES/
isc-talk-2006.pdf

[11] See: http://www.green500.org/

architectures in the TOP500 lists. My
thanks go to Hans Günther Kruse, Univer-
sity of Mannheim, for checking the manu-
script and for his suggestions for im-
provement. And last but not least, I would
like to thank Heike Walther, Prometeus

GmbH, for translating most of this paper
and Jon Bashor, LBNL, for giving it the
final polish.

Green500
Rank MFlop/s/W Site Computer

Total
Power
(kW)

TOP500
Rank

1 357.23
Science and Technology
Facilities Council –
Daresbury Laboratory

Blue Gene/P
Solution 31.10 121

2 352.25 Max-Planck-Gesellschaft
MPI/IPP

Blue Gene/P
Solution 62.20 40

3 346.95 IBM – Rochester Blue Gene/P
Solution 124.40 24

4 336.21 Forschungszentrum
Jülich (FJZ)

Blue Gene/P
Solution 497.60 2

5 310.93 Oak Ridge National
Laboratory

Blue Gene/P
Solution 70.47 41

6 210.56 Harvard University
eServer Blue
Gene
Solution

44.80 170

7 210.56
High Energy Accelerator
Research Organization /
KEK

eServer Blue
Gene
Solution

44.80 171

8 210.56 IBM – Almaden
Research Center

eServer Blue
Gene
Solution

44.80 172

9 210.56 IBM Research
eServer Blue
Gene
Solution

44.80 173

10 210.56 IBM Thomas J. Watson
Research Center

eServer Blue
Gene
Solution

44.80 174

62 UPGRADE Vol. IX, No. 2, April 2008 © CEPIS

UPENET

(Keywords added by the Editor of
the UPENET section)

Keywords: Critical Factors, IT
Projects, Project Management.

1 The Difficulty of Achieving
Success in IT Projects

As pointed out by some researches
[1][2][4][18][19][20], IT project initia-
tives often have only a moderate suc-
cess rate. Some signs of improvement
have been seen over the years, but the
percentage of projects that are heavily
delayed or suffer from an excessive
absorption of economic resources or
major qualitative shortcomings still
remains high (Table 1).

It is interesting to note that prob-
lems related to project management
are, in a sense, "democratic"; they ac-
tually affect every kind of firm, regard-
less of size or industry. The less than
flattering list of the more striking cases
of IT project failures includes some
companies that are considered excel-
lent: such as Avis Europe which, in
2004, abandoned the installation of its
ERP system after having spent 54 mil-
lion euros; or Ford Motor Co. which,
in 2004, interrupted its project after
having spent 400 million euros on
analysis and investment in the purchas-
ing system; or McDonald’s which can-
celled an innovative information acqui-
sition project in 2002 after having
spent 170 million euros. There are
many other more or less well known

and more or less expensive examples.
The purpose of this paper is not to list
the problems and misfortunes of oth-
ers but rather to point out which fac-
tors normally contribute to the failure
of IT projects.

For each project it is possible to
draw up a relatively long list of factors
that have negatively influenced its per-
formance. From an individual compa-
ny’s point of view, the discussion of
these factors is a very useful exercise
as it allows areas of improvement to
be highlighted, maintaining a direct
link with the specific situation. How-
ever, in the absence of past data carved
out in a specific situation, we need to
adopt an alternative approach (the one
which forms the basis for this paper)
in order to obtain useful information
that can be used to improve project
performance. This approach, known as
Critical Success Factors, is based on
the study of those variables that are
seen to exert a strong influence on
project results in different situations,
irrespective of the specific information
technology to be implemented. Criti-
cal Success Factors in IT projects are

well studied in literature, and various
researches [1][2][5][7][8][9][11][12]
[13] [14][15][17] come to very similar
conclusions, thereby underlining that,
at least from the point of view of the
most problematic areas and those that
need to be improved, the situation is
quite clear and shared. However this
does not mean that managing these
critical areas is an easy task.

2 Critical Success Factors in
IT Projects

The first conclusion that clearly
emerges from studies on Critical Suc-
cess Factors is that difficulties in
projects are seldom caused by tech-
nologies. This may seem strange, be-
cause technologies are often consid-
ered to be complex and the source of
difficulties. If this is accepted as true
as a first approach, it is also true that
the solution to technological problems
is more deterministic; that is, when
confronted with a technological prob-
lem, information retrieval and the train-
ing and competence of professionals
are determinant variables for its reso-
lution. Moreover, interactions between

Project Management

Critical Factors in IT Projects
Marco Sampietro

© Mondo Digitale, 2007
This paper was first published, in its original Italian version, under the title "I fattori critici nei progetti informatici", by Mondo

Digitale (issue no. 4, December 2007, pp. 3-9, available at <http://www.mondodigitale.net/>). Mondo Digitale, a founding member of
UPENET, is the digital journal of the CEPIS Italian society AICA (Associazione Italiana per l’Informatica ed il Calcolo Automatico,
<http://www.aicanet.it/>.)

Managing IT projects is certainly a complex and very challenging activity; every project has its distinct features and there
are no recipes for success that can be repeated in every situation. Nevertheless there are some factors that have shown a
high rate of repetitiveness and a considerable impact on project performances. These factors are called "Critical Success
Factors". This article analyses, in differing degrees of detail, the factors that most commonly impede the management of
IT projects.

Author

Marco Sampietro is Professor of the Information System Unit of the SDA Bocconi
School of Management in Milan (Italy). He is the Director of the course on Information
System Project Management. He is Professor at the Part Time Executive MBA for
Project Management and Process Driven Organization courses. He also teaches Project
Management at Bocconi University. He coordinates the Master in Information Systems
Management at Bocconi University. <marco.sampietro@sdabocconi.it>

UPGRADE Vol. IX, No. 2, April 2008 63© CEPIS

UPENET

Table 1: Statistics on the Success of IT Projects.

Research
 Main results

Standish Group-Chaos Report
(1994 and 2004)

In 1994 the success rate of IT projects was 16%; in 2004 it was
24%. In 2004, 51% of projects were considered problematic;
15% failed.

Robbins Gioia Survey (2001) 51% of respondents considered the ERP project unsatisfactory.
46% of respondents reported that the firm did not understand
the system’s potential and therefore there had not been any
substantial improvement.

Conference Board Survey (2001) 40% of respondents stated that no benefits were apparent a
year after the implementation of an ERP system.

Oxford University (2003) 16% of IT projects were considered successful, 74% were
problematic, and 10% were abandoned.

Royal Academy of Engineering and the
British Computer Society (2004)

Only 16% of IT projects could be considered successful.

technological components, even com-
plex ones, can be objectively repre-
sented and schematized, and so be re-
solved by scientific methods.

The same does not apply to other
variables that influence the course of a
project. Relationships between people,
the influence of technological changes,
and stakeholder expectations are all
high impact variables, but ones which
can never be represented with certainty
and objectivity. The margins of inde-
terminacy are always present and
project management therefore becomes
the management of uncertainty and
dynamism.

Studies suggest that IT project
Critical Success Factors can be classi-
fied into two groups: factors linked to
the organization method, management
and control of the IT project (and there-
fore to expertise in project manage-
ment application) and relational fac-
tors, linked to the ability to understand
ourselves and others, and to manage
the numerous relationships involved in
an IT project in the best way possible.

In Table 2 we propose a list of Criti-
cal Success Factors that derive from
various researches carried out in the IT
industry. For people who manage IT
projects, many of these factors will not
be new. The aim of this paper is to pro-
vide operational indications on the
management of some factors that, even

if often quoted, are rarely analysed in
detail. Since the topic is complex, it is
impossible to address all the factors
with the same level of analysis in one
paper. The choice of which factors to
address in depth stems from the obser-
vation that their impact is very often
underestimated and that they are some-
times not even considered as variables
highly influential in the project. There-
fore the factors highlighted in bold in
the table will be more closely ad-
dressed, while the others will be given
a brief description in the table, under-
lining the most important aspects.

In this section we are going to ana-
lyse three critical factors in particular:
having clear shared goals, generating
realistic expectations, and producing
realistic planning. For these factors we
are not only going to describe the nega-
tive impacts but we are also going to
provide operational indications on how
to manage them in the best possible
way.

3 Clear Shared Goals
This factor is one of the most

quoted factors in researches. At times
it can be very difficult to come up with
well-defined goals, but very often, un-
der the pressure of time, we settle for
starting without having the situation
clear and this invariably generates a
great many difficulties. We should not

confuse goals with functional or tech-
nical specifications: goals are the des-
tination while specifications are part of
the means whereby we achieve those
goals. Goals are rarely of a technical
nature, but they are linked to business
results. It is important to have excel-
lent functional and technical specifi-
cations however; if they are not part
of a wider context, they risk being read
without a critical eye and can quickly
become obsolete, producing instabil-
ity in the project.

Moreover, it is fundamental to com-
municate goals clearly, at least to the
people that are most involved in the
project. Ensuring that everybody un-
derstands the goals will narrow the lati-
tude for personal interpretation.

Only communicating goals that
strictly relate to the area for which a
person or group of collaborators is re-
sponsible and therefore preventing
them from appreciating the project as
a whole has proven to be a bad habit.
Nevertheless, this behaviour, which is
often rooted in good faith in that it aims
to reduce the complexity perceived by
the collaborators, is a mistake for vari-
ous reasons. Firstly because of the fol-
lowing organizational principle: "Peo-
ple are much more motivated and ef-
fective if they understand the context
in which they are operating". In other
words, understanding how their actions

64 UPGRADE Vol. IX, No. 2, April 2008 © CEPIS

UPENET

Table 2: Critical Success Factors in IT Projects.

Clear shared goals (see the text of the article)
Presence of the sponsor and ability to influence the project. A sponsor must have the
organizational leverage to be able to support the project when necessary and s/he must be
present at the most important moments like the kick-off meeting and meetings where important
decisions are taken. The sponsor’s contribution to the project is limited from the point of view of
time spent, but when s/he intervenes s/he must be incisive. Knowing that the sponsor is ready
to intervene if needed provides a strong motivational drive.
Generating realistic expectations (see the text of the article)
Realistic planning (see the text of the article)
Understanding and adapting to the project’s natural life cycle. Projects have their own
distinct features that we cannot alter. For example, if we have to implement a Decision Support
System, it is physiological that users actually using the system are going to learn to appreciate it
and that they will discover new needs they did not even know they had before. If we consider
this idea to be physiological, we should adopt project life cycles that are congruent with this
idea; therefore a large number of interactions should be anticipated and planning cycles should
be very short. If, on the other hand, we adopt paradigms that are not contextual to the situation,
such as the application of a waterfall life cycle, we would find ourselves in the situation of
starting out with some very detailed planning which would prove to be barely applicable, and we
would judge the users to be incompetent because they would not be able to communicate all
their needs from the outset. Adopting and following the correct life cycle of a project is a
fundamentally important issue because it allows us to represent and manage a phenomenon in
the way best suited to its nature.
Considering past experience. An ever increasing number of companies are implementing
actions to pool and systematize experiences in past projects. In fact, strong repetitiveness has
been noticed in factors that negatively influence projects. Making them available and paying due
attention to them is certainly a winning strategy. Unfortunately we have noticed that in the Italian
IT industry there still is an almost pedagogical vision of mistakes: everyone must also learn
through their mistakes. Perhaps this approach can be shared from the point of view of personal
growth, but less so from the point of view of keeping costs down and ensuring the success of a
project or company.
Understanding the reference context. A project is part of a relational network, albeit a very
complex one. It is important to understand who are the key players that can affect the project
through their actions, understand their attitude towards the project, and therefore adopt
behaviours that are appropriate for the situation, while avoiding the creation, even
unintentionally, of situations that are adverse to the project. Users deserve a leading role in the
reference context as they are too often trivialized in their role as IT end users. Users represent
the end customers of the project efforts and therefore it is possible to obtain interesting results
from the careful evaluation of their characteristics and their active involvement. Users are often
not involved much in an attempt to “limit” changes. This strategy can be very dangerous
because working in isolation and with a very different mentality from that of the users can lead
to a significant departure from their expectations, which can in turn lead to extreme instances
such as project rejection.
Recognizing complexity. The underestimation of a project’s complexity generates not only
macroscopic planning mistakes but also the use of inadequate methodologies and tools. One
factor that contributes to complexity is scale; i.e. the sheer dimension of the project. In fact it
has been noticed that projects with similar content but very different dimensions have led to new
problems and to completely different results.
Arranging planning and control systems. Planning and monitoring project activities means
knowing exactly where we are and how far away we are from our goal. Improvisation, often
adopted in projects that appear easy at first glance, often turns out to be inadequate. An alarm
bell for a project manager is being unaware of the current state of progress of the various
activities and the problems that are arising in the project.
More frequent project milestones. If the scale factor in projects has a great influence on the
complexity and therefore the management of a project, a good method is to try to represent a
complex project as the sum of smaller projects. By doing so the focus shifts from the planning
and management of one big project to the management of interfaces between various smaller
projects. There are no projects that cannot be divided up, but that is not to say that it is easy to
adopt this approach. This is a project management skill that is not easy to find.
Having clear project borders. However, even with clear goals there are many interpretations
as to exactly where a project intervention should end; in other words, when you can state with

UPGRADE Vol. IX, No. 2, April 2008 65© CEPIS

UPENET

relate to the actions of other colleagues
or interlocutors helps people adopt
behaviours that are more suited to the
specific situation and allows individu-
als to feel they are part of an important
complex initiative and not only mere
executors of small activities without
clear links to important results. Further-
more, the underestimation of complex-
ity on the part of collaborators leads to
intolerance of possible delays or diffi-
culties in the project. In fact, if the per-
ceived complexity is low, the people
involved may believe that the difficul-
ties are linked to incompetence or dis-
organization and they will therefore be
less inclined to accept these situations.

However, having well-described,
clear, and shared goals is still not
enough. Even well-described goals,
understood by everybody, can be
grossly distorted with the passage of
time. Personal expectations, the divi-
sion of work time into different
projects and between projects and
functional activities, and the exchange
of opinions and information with other
colleagues, lead to the modification
and reinterpretation of project goals,
even if these modifications have not
in fact been requested by the client. We
are not talking about deviations that
lead to the performance of completely
different projects, but rather about peo-
ple performing activities that were not
requested and so failing to perform
other more urgent activities and dedi-
cating themselves, in different ways,
to the same activities, or to activities
that may even partly conflict with one
another, thereby causing friction and
loss of time, a very precious factor in
projects.

4 Realistic Expectations
In IT projects the matter of expec-

tation management is very important.
Unfortunately we are experiencing a
phenomenon of technology
trivialization, where the perception of
those who do not have IT skills leads
them to believe that everything can be
resolved with the touch of a mouse in
a very short time. The extremely in-
tangible nature of IT itself reinforces
this perception: complex projects may
be resolved by writing software that

can be physically recorded on a CD
ROM and this certainly does not help
customers or users who are unaccus-
tomed to technology to perceive its
underlying complexity.

The problem of creating unrealis-
tic expectations lies in the fact that peo-
ple will judge the project on the basis
of initially incorrect premises incorrect
factors. While the raising of expecta-
tions is a factor that people experience
positively, the lowering of expectations
during the project may have serious
consequences since it can lead to the
alienation of people, the lowering of
their willingness to collaborate, and the
creation of harsher judgements that do
not reflect the efforts of those collabo-
rating on the project.

Given that in an ideal world every-
one would be able to appreciate the
complexity underlying our efforts, and
thereby formulate realistic expecta-
tions, a pragmatic approach must in-
stead consider what can realistically be
done and not what it would be nice to
have. It is actually unrealistic to think
that we can provide everybody with all
the skills necessary to fully appreciate
the complexity of IT projects.

It is therefore necessary to work on
other fronts, in particular on our capac-
ity to induce the formation of consist-
ent expectations. While we stress the
fact that the problem cannot be fully
resolved, we do propose some partial
correctives.

In this respect it is important to
objectify as far as possible the work
performed and to be performed. In
other words, from the initial phases of
the project, it is useful to provide in-
formation that can be easily interpreted
by our interlocutors. A first step might
be to draw up a clear project plan that
can be understood by anyone (see the
Critical Success Factor "Common Vo-
cabulary" with regard to this), in which
the required commitment in terms of
resources and time can be easily ap-
preciated. Moreover, it can be useful
to translate technical elements into
terms that can be more easily under-
stood by people without IT skills. For
example, to explain that in order to
develop a program it is necessary to
write a quantity of code that, if put on

paper, would cover 1000 pages, can be
much more immediate for a user than
such technical aspects as how much
memory is required to run that program
or lines of code.

In order to create realistic expecta-
tions, the initial phase of the project
(the so-called Conception Phase),
when ideas and proposals are gathered
together and discussed, is essential. In
this phase, when looking into the in-
volvement of users or the people that
may support the project, we often tend
to overestimate the features of the
project, thereby contributing to the
creation of unrealistic expectations and
thus unintentionally laying the basis for
more difficult project management. In
this respect, the questions put to users
during typical interviews are very im-
portant. For example, if we wish to
improve the services available on a
company portal, it could be dangerous
to ask about users’ interest regarding
specific technological functions be-
cause, if they see later on that those
functions have not been implemented,
they may be dissatisfied. It is better to
focus on the needs that users have ex-
pressed and to omit any mention of
implementation modes.

5 Realistic Planning
To plan means providing oneself a

method for achieving desired goals.
Planning is useful to those involved in
the project for organizing, coordinat-
ing with others, and reaching desired
goals. If we want planning to support
our work it has to be realistic; that is,
it must be able to represent, albeit in a
simplified way, the hot points of the
project and so be useful when perform-
ing project activities. In many IT
projects we have noticed that planning
is completely detached from real
project implementation and manage-
ment. The moment planning becomes
a simple "formal code of good con-
duct" for the project, merely docu-
mentation that must be shown in order
to demonstrate professionalism, it may
even become an obstacle to the suc-
cess of the project as it requires time
to be developed but does not provide
any support to project management.

Even those who arm themselves

66 UPGRADE Vol. IX, No. 2, April 2008 © CEPIS

UPENET

with good will and try to develop a
project plan not only to demonstrate
correct reporting, but also to create a
real action guide, often discover that
their project plans are not very useful
and are very different from reality, and
so will tend to abandon or underesti-
mate the real importance of good plan-
ning. So, why is realistic planning so
difficult?

One problem is in the planning ac-
tivity itself, which consists of the shap-
ing, and therefore the simplification,
of future events. Unfortunately, when
we approach planning we find it natu-
ral to replace timing, costs and the use
of resources not with what is likely to
occur in the specific case, but rather
with average, idealized, and "normal"
values. This immediately produces a
huge gap between what could realisti-
cally occur and what we anticipate will
happen. Risks are often completely
underestimated and activities idealized,
under the assumption that they will be
performed without hitches, interrup-
tions or mistakes. However, good plan-
ning must consider these factors in or-
der to be as representative as possible
of reality as it might happen, and not
as we would like it to happen. An in-
nate problem with human beings with
regard to our ability to attribute realis-
tic schedules to activities is the diffi-
culty of mentally representing activi-
ties over a long time horizon. An ex-
ample of this can be seen in an experi-
ment that shows how the way we ask
ourselves questions about the time re-
quired to perform activities has a very
strong impact on the realism of plan-
ning. Some project managers were
asked how many months they needed
to perform certain activities; the an-
swer was about one month. They same
question expressed in terms of days
rather than months caused the manag-
ers to reconsider the previous answer
and say that two months would most
likely be needed. This happens because
human beings are "conditioned" in
their perception of time by the sleep/
wakefulness cycle. The day is thus our
physiological planning unit; the month
is only a convention. Only the habit of
planning can change this method of
relating activities to time.

When planning, therefore, we must
always be aware of our natural limits.
This aspect is stronger still in projects
characterized by profiles with strong
technological competences, as often
happens in IT projects. As Jerry Mad-
den, NASA project and program man-
ager, has outlined in his study on Criti-
cal Success Factors, technically ori-
ented people have a tendency to be
optimistic and tend to underestimate
the presence and impact of difficulties.
To be optimistic is undoubtedly a posi-
tive quality, but it should not cause us
to be unrealistic, because we run the
risk that our projects will run system-
atically behind schedule, not only be-
cause of external causes, but also due
to the underestimation of real difficul-
ties that may be encountered and their
consequences in terms of time. For
example, in Microsoft development
departments, many managers normally
double the schedule set by program-
mers. This is questionable from a
purely project management point of
view, but it is a concrete response to
an existing problem.

6 Conclusion
Perhaps to effectively intercept,

monitor, and manage all the factors that
act as obstacles in the achievement of
desired project outcomes is a utopian
goal. Typically, information system
projects are characterized by strong
dynamism and this makes it difficult
to effectively identify and control all
the variables that can affect project
performances. Nevertheless, it is pos-
sible to identify and focus efforts on
those factors, typically few in number,
that may have a significant impact on
the success of the project. As we have
seen, many factors are linked to project
management abilities and organiza-
tional sensitivity, more so than to pure
technological competencies. This does
not mean that technological competen-
cies are secondary for IT project man-
agers; they remain essential as they al-
low them to have a closer understand-
ing of technological problems which
are otherwise often trivialized and un-
derestimated, and they allow them to
establish effective relations with the
collaborators who have to accomplish

tasks of a more operational nature.
Technological, organizational, and

project management competencies
must all be present and balanced in
order to address IT project manage-
ment related difficulties in an effective
manner.

Although there are studies that pro-
vide a classification of the importance
of different Critical Success Factors
derived from qualitative surveys, it is
advisable not to trust these reports
uncritically but rather to personalize
the approach based on the specific re-
ality of each specific project. True av-
erage values are not actually much use;
it is the project manager, project team,
and users’ task to collaborate in order
to establish the project’s strengths and
weaknesses and thereby leverage the
first and limit the second in order to
obtain successful results.

References
[1] Chaos Report, Standish Group,

1994
[2] Chaos Report, Standish Group,

2003
[3] Charette, R.N.: Why Software

Fails. IEEE Spectrum, September
2005.

[4] Conference Board Survey, 2001
[5] Cusing K.: Why Projects Fail.

Computer Weekly, November 2002.
[6] Dunning D., Heath C., Suls

J.M.: Picture Imperfect. Scientific
American Mind, December 2005.

[7] Ewusi-Mensah K.: Critical Is-
sues in Abandoned Information Sys-
tem Development Projects. Communi-
cations of the ACM, Vol.40, no.9,
1997.

[8] Fielding R.: IT projects doomed
to failure. Computing, November
2002.

[9] Fortune J., Peters G.: Informa-
tion Systems: Achieving Success by
avoiding failure. Wiley, 2005.

[10] Hale D.P., Sharpe S., Hale J.E.:
Business-Information Systems Profes-
sional Differences: Bridging the Busi-
ness Rule. Information Resources
Management Journal, April-June 1999.

[11] Jaques R.: UK wasting billions
on IT projects. Computing, April 2004.

[12] IT Project Management: Chal-
lenges and Best Practices. Kellogg

UPGRADE Vol. IX, No. 2, April 2008 67© CEPIS

UPENET

School of Management, 2003.
[13] Kelly L.: Government

reexamines IT failures. Computing,
July 2003.

[14] Liebowitz J.: Information Sys-
tems: Success or Failure? The Journal
of Computer Information Systems, Vol.
40, no. 1, 1999.

[15] Lyytinen K., Hirschheim R.:
Information System failures: A survey
and classification of the empirical lit-
erature. In Oxford Research in Infor-
mation Technology, Oxford University
Press, 1987.

[16] Martinsons M.G., Chong
P.K.C.: The influence of human fac-
tors and specialist involvement on in-
formation systems success. Human
Relations, Vol. 52, 1999.

[17] Common Causes of Project
Failure. National Audit Office and the
Office of Government Commerce,
2002.

[18] Robbins Gioia Survey, 2001.
[19] Common Methodologies for

Risk Assessment and Management,
and The Societal Aspects of Risk. The
Royal Academy of Engineering, Lon-
don, 2002.

[20] Sauer C., Cuthbertson C.: The
state of IT project management in the
UK. Templeton College, Oxford Uni-
versity, November 2003.

[21] Wynekoop J.L., Walz D.B.:
Revisiting the Perennial Question: Are
IT People Different? Database for Ad-
vances in Information Systems, Vol.
29, 1998.

68 UPGRADE Vol. IX, No. 2, April 2008 © CEPIS

CEPIS NEWS

Euro-Inf Project
The Euro-Inf project aims to cre-

ate a framework to set up a European
system for accrediting informatics edu-
cation at the first and second cycle lev-
els, and in doing so to improve the
quality of informatics education pro-
grammes, provide a recognized label
for accredited programmes, and ulti-
mately to increase the mobility of Eu-
ropean graduates in accordance with
the Lisbon Strategy. Partners in this
project include ASIIN (the lead part-
ner), CEPIS, the Hamburg University
of Applied Sciences, and the Univer-
sity of Paderborn.

Following a meeting of the project
board in late 2007, Euro-Inf adopted a
refined version of the Framework
Standards and Accreditation Criteria
for Informatics Programmes. This re-
vised version is available on the Euro-
Inf project website <http://www.euro-
inf.eu/>.

With the project entering its last
phase, the final conference will take
place on September 4 and 5, 2008 at
Cagliari, Sardinia.

Due to limited space, the confer-
ence is aimed at the following partici-
pants:

representatives of European
Higher Education Institutes (HEI) in-
terested in quality assurance or obtain-
ing a European Quality Label for their
study programmes;

international informatics ex-
perts participating as future Euro-Inf
auditors (on invitation);

representatives from industry
and professional societies having an
interest in raising the quality of
informatics higher education;

participants from countries in
the Bologna/Socrates Area (EU + Ice-
land, Norway, Liechtenstein, Turkey).

The conference will deal with is-
sues of subject-specific quality assur-
ance for informatics higher education.
In particular, it focuses on the activi-
ties, results and future of the Euro-Inf
project. Further information on this
conference will be available shortly on
the project website: <http://www.euro-
inf.eu/>.

E-Skills Foresights Scenarios
project

Although this project is finished
and has been submitted to the Euro-
pean Commission, the results are gain-
ing considerable acclaim. The report
examined the key trends that will play
a role in influencing the supply and
demand of each of the three types of
e-skills, as well as the off-shoring of
ICT work that is of growing political
interest and could substantially affect
future demand levels. It then examined,
qualitatively and quantitatively, how
things could develop.

A list of ninety “change drivers”
covering social, technological, eco-
nomic, environmental, political and
values-related forces were examined.
The main impact of each driver on the
demand for ICT Practitioner skills was
analysed, then three factors that are
strong determinants of this demand and
are impacted most significantly by the
ninety drivers were identified: the rate
of ICT innovation (technological
change), economic growth (both
within the EU and beyond), and the
degree of off-shoring undertaken
within the industry.

The project concluded that esti-
mates of supply and demand levels in-
dicate that the EU could run seriously
short of people with the right e-skills
by as early as 2010. Demand is calcu-
lated to be as much as 250,000 per year

by then, drawing on an insufficient
supply pool of just 180,000. Europe
therefore, could face an annual short-
fall in skilled IT personnel of 70,000
by 2010. Such a shortfall would cause
downstream negative effects and re-
strict opportunities for economic de-
velopment. In turn, this could cause the
EU to lose its competitive advantage
on the world stage and shift ICT activ-
ity to other rival global regions.

The report recommends that the
ICT industry must not be allowed to
develop "organically". It must be man-
aged to prevent the industry from suf-
fering the consequences of an inad-
equate workforce. This inadequacy
could take two forms: too few people
and/or not the right depth of skills. To
tackle the potential shortage of skilled
ICT professionals, the research group
recommends the following joint ac-
tions and strategies for the industry and
policymakers:

Promotion of better understand-
ing within the ICT industry and public
bodies of current quantitative and
qualitative skill levels in Europe.

Creation of awareness of the
threats and opportunities in the growth
of globalization of ICT activity, and the
benchmarking of EU skill levels
against competitor economies.

Seeking of public-private initia-
tives and investment by ICT industry
players and the European Commission
to estimate future levels of demand.
This would create better understand-
ing of the impacts of cyclical market
effects on practitioner supply and de-
mand.

Training must be used more
consistently and it should be ensured
that ICT skills are transferred through-
out business.

Concentration on the quality

CEPIS Projects

Selected CEPIS News
Fiona Fanning

UPGRADE Vol. IX, No. 2, April 2008 69© CEPIS

CEPIS NEWS

aspects of skill shortages, not just the
quantity. The ICT industry needs skill
elites and people with the right level
of excellence.

To get the balance of supply and
demand right, education policymakers,
in regional and national governments
and at EU level, must address our fu-
ture ICT workforce needs now. A
greater supply of ICT professionals
must be stimulated by investing in the
right research and development, by
creating a clear and pragmatic immi-
gration policy, and through coopera-
tion between professional bodies, trade
unions and policymakers. The ICT in-
dustry itself can play an important role
in coordinating the efforts of these
groups by working closely with edu-
cational institutions.

CEPIS welcomes your comments
on this report. For the Executive sum-
mary and full report of this work please
see: <http://www.cepis.org/index.jsp?
b=0-636-638&pID=648&nID=717>.

In the future, CEPIS plans to pub-
lish a post project report that will take
new data into account as well as the
changing economic conditions.

Other CEPIS News
On April 12, the CEPIS Spring

Council brought together 28 European
Informatics Societies for a day of pro-
ductive discussion in the beautiful city
of Ljubljana, Slovenia. Guest speaker,
Ljudmila Tozon, Counsellor of the Per-
manent Representation of Slovenia to
the EU for Telecommunications and In-
formation Society, provided an update
on the European Union’s i2010 strat-
egy, with a preview of the upcoming
mid-term review as well as an over-
view of the Slovenian Presidency pri-
orities.

The following SINs and Working
Groups provided updates on their
work: Legal and Security SIN, Educa-
tion and Research, Professionalism,
and Informatics Students and Young
Professionals.

If you are interested in learning more
about the work of these CEPIS groups,
please contact Fiona Fanning, CEPIS
Policy and Communications Executive,
<fanning@cepis.org>.

